首页 | 本学科首页   官方微博 | 高级检索  
   检索      


NMR study of the phosphoryl binding loop in purine nucleotide proteins: evidence for strong hydrogen bonding in human N-ras p21
Authors:A G Redfield  M Z Papastavros
Institution:Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254.
Abstract:The structure of the phosphoryl binding region of human N-ras p21 was probed by using heteronuclear proton-observed NMR methods. Normal protein and a Gly-12----Asp-12 mutant protein were prepared with two amino acids labeled with 15N at their amide positions: valine and glycine, aspartic acid and glycine, and lysine and glycine. We completed the identification of amide 15NH resonances from Gly-12 and Asp-12 to the end of the phosphoryl binding domain consensus sequence (Lys-16) in protein complexed with GDP and have made tentative amide identifications from Val-9 to Ser-17. The methods used, together with initial identifications of the Gly-12 and -13 amide resonances, were described previously Campbell-Burk, S. (1989) Biochemistry 28, 9478-9484]. The amide resonances of both Gly-13 and Lys-16 are shifted downfield below 10.4 ppm in both the normal and mutant proteins. These downfield shifts are presumed to be due to strong hydrogen bonds with the beta-phosphate oxygens of GDP.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号