首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Seminal plasma induces angiogenic chemokine expression in cervical cancer cells and regulates vascular function
Authors:Sales Kurt J  Sutherland Jason R  Jabbour Henry N  Katz Arieh A
Institution:MRC/UCT Research Group for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, University of Cape Town, South Africa. kurt.sales@uct.ac.za
Abstract:Cervical cancer is one of the leading gynecological malignancies in women. We have recently shown that seminal plasma (SP) can regulate the inflammatory cyclooxygenase-prostaglandin pathway and enhance the growth of cervical epithelial tumours in vivo by promoting cellular proliferation and alteration of vascular function. This study investigated the molecular mechanism whereby SP regulates vascular function using an in vitro model system of HeLa cervical adenocarcinoma cells and human umbilical vein endothelial cells (HUVECs). We found that SP rapidly enhanced the expression of the angiogenic chemokines, interleukin (IL)-8 and growth regulated oncogene alpha (GRO) in HeLa cells in a time-dependent manner. We investigated the molecular mechanism of SP-mediated regulation of IL-8 and GRO using a panel of chemical inhibitors of cell signalling. We found that treatment of HeLa cells with SP elevated expression of IL-8 and GRO by transactivation of the epidermal growth factor receptor, activation of extracellular signal-regulated kinase and induction of cyclooxygenase enzymes and nuclear factor kappa B. We investigated the impact of IL-8 and GRO, released from HeLa cells after treatment with SP, on vascular function using a co-culture model system of conditioned medium (CM) from HeLa cells, treated with or without SP, and HUVECs. We found that CM from HeLa cells induced the arrangement of endothelial cells into a network of tube-like structures via the CXCR2 receptor on HUVECs. Taken together our data outline a molecular mechanism whereby SP can alter vascular function in cervical cancers via the pro-angiogenic chemokines, IL-8 and GRO.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号