首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The amphipathic alpha-helical repeats of apolipoprotein A-I are responsible for binding of high density lipoproteins to HepG2 cells.
Authors:L Leblond  Y L Marcel
Institution:Laboratory of Lipoprotein Metabolism, Clinical Research Institute of Montreal, Quebec, Canada.
Abstract:Nine monoclonal antibodies (mAbs) against apoA-I reacting with distinct but overlapping epitopes covering more than 90% of the sequence have been used to block the interaction of 125I-labeled high density lipoprotein (125I-HDL) with HepG2 cells in order to delineate the cell binding domain of apolipoprotein A-I (apoA-I). While 2 mAbs reacting with epitopes exclusively localized in the N-terminal region (residues 1 to 86) enhanced slightly association of 125I-HDL, all other mAbs, which react with epitopes localized in the regions of amphipathic alpha-helical repeats, inhibited that association by 9 to 15%. Although this inhibition is not significant compared to the effect of an irrelevant mAb, combination of these mAbs could significantly inhibit the association of 125I-HDL (32 to 43%) as could polyclonal antibodies (up to 95%). These results are compatible with the concept of HDL binding to these cells via the nonexclusive interaction of each of the amphipathic alpha-helical repeats of apoA-I. When the same approach was applied to block the association of 3H-cholesteryl ether (CE)-labeled HDL to HepG2 cells, each anti-apoA-I could inhibit by 15 to 25% the cellular association of cholesteryl ether while mAbs in combination or polyclonal antibodies could inhibit this association up to 45% or 60%, respectively. The cholesteryl ether radioactivity that remained associated with the cells (40%) in the presence of polyclonal antibodies could be effectively blocked by addition of an antibody against the receptor binding domain of apoE (1D7). Therefore, the differential cellular association of cholesteryl ether compared to apolipoprotein can be explained by the presence of apoE secreted by HepG2 and apoE or apoB/E receptors. Thus, we conclude that the optimum uptake of both cholesteryl ether and apoA-I of HDL by cells requires the accessibility of the entire apoA-I and the cooperative binding of the amphipathic alpha-helical repeats to HepG2 cell membranes. This type of interaction would explain the competitive binding observed for apoA-I, -A-II, and -A-IV by others.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号