首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of secondary electrons and metastable atoms in the electron-beam activation of argon-silane mixtures
Authors:G I Sukhinin  A V Fedoseev  S Ya Khmel’
Institution:(1) Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 1, Novosibirsk, 630090, Russia
Abstract:The energy and spatial degradation of the primary beam electrons and the production of high-energy secondary electrons in ionizing collisions are analyzed by solving the Boltzmann integral equation for the electron distribution function. The effect of the primary and secondary electrons on the direct ionization of an Ar-SiH4 mixture, the production of metastable argon atoms, and the dissociation of monosilane molecules is investigated over a wide range of the beam electron energies, argon pressures, and monosilane concentrations. The influence of metastable Ar* atoms on the dissociation of SiH4 is studied by using the balance equation for metastable argon atoms and the equation for the ambipolar diffusion of ions and low-energy secondary (plasma) electrons in the beam plasma. It is shown that the main contribution to the activation of an Ar-SiH4 mixture in an electron-beam plasma is provided by secondary electrons with energies higher than the excitation threshold for argon and the dissociation threshold for monosilane, whereas the contribution from metastable argon atoms, though potentially being comparable with that from secondary electrons, is less than in gas-discharge plasmas.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号