首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Scattering based hyperspectral imaging of plasmonic nanoplate clusters towards biomedical applications
Authors:Aniruddha Ray  Raoul Kopelman  Bonghwan Chon  Kimberly Briggman  Jeeseong Hwang
Institution:1. Quantum Electronics and Photonics Division, National Institute of Standards and Technology, Boulder, CO, USA;2. Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI, USA;3. 303 497 6588303 497 3387
Abstract:A new optical scattering contrast‐agent based on polymer‐nanoparticle encapsulated silver nanoplates (PESNs) is presented. Silver nanoplates were chosen due to the flexibility of tuning their plasmon frequencies. The polymer coating preserves their physical and optical properties and confers other advantages such as controlled contrast agent delivery. Finite difference time domain (FDTD) simulations model the interaction of light with the nanoplates in different orientations in the cluster. Hyperspectral dark field microscopy (HYDFM) observes the scattering spectra of the PESNs. An unsupervised sequential maximum angle convex cone (SMACC) image analysis resolves spectral endmembers corresponding to different stacking orientations of the nanoplates. The orientation‐dependent endmembers qualitatively agree with the FDTD results. For contrast enhancement, the uptake and spatial distribution of PESNs are demonstrated by an HYDFM study of single melanoma cells to result in an enhanced contrast of up to 400%. A supervised spatial mapping of the endmembers obtained by the unsupervised SMACC algorithm reveals spatial distributions of PESNs with various clustering orientations of encapsulated nanoplates. Our study demonstrates tunability in plasmonics properties in clustered metal nanoparticles and its utility for the development of scatter‐based imaging contrast agents for a broad range of applications, including studies of single cells and other biomedical systems.
figure

Keywords:hyperspectral dark field imaging  nanoplate clusters  cancer cells  FDTD simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号