首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stromal Hyaluronan Interaction with Epithelial CD44 Variants Promotes Prostate Cancer Invasiveness by Augmenting Expression and Function of Hepatocyte Growth Factor and Androgen Receptor
Authors:Shibnath Ghatak  Vincent C Hascall  Roger R Markwald  and Suniti Misra
Institution:From the Department of Regenerative Medicine and Cell Biology and Division of Rheumatology and Immunology (Department of Medicine) and ;the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425 and ;the §Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, Ohio 44195
Abstract:The main aim of our study is to determine the significance of the stromal microenvironment in the malignant behavior of prostate cancer. The stroma-derived growth factors/cytokines and hyaluronan act in autocrine/paracrine ways with their receptors, including receptor-tyrosine kinases and CD44 variants (CD44v), to potentiate and support tumor epithelial cell survival. Overexpression of hyaluronan, CD44v9 variants, and stroma-derived growth factors/cytokines are specific features in many cancers, including prostate cancer. Androgen/androgen receptor interaction has a critical role in regulating prostate cancer growth. Our previous study showed that 1) that increased synthesis of hyaluronan in normal epithelial cells promotes expression of CD44 variants; 2) hyaluronan interaction with CD44v6-v9 promotes activation of receptor-tyrosine kinase, which stimulates phosphatidylinositol 3-kinase-induced cell survival pathways; and 3) CD44v6/short hairpin RNA reduces colon tumor growth in vivo (Misra, S., Hascall, V. C., De Giovanni, C., Markwald, R. R., and Ghatak, S. (2009) J. Biol. Chem. 284, 12432–12446). Our results now show that hepatocyte growth factor synthesized by myofibroblasts associated with prostate cancer cells induces activation of HGF-receptor/cMet and stimulates hyaluronan/CD44v9 signaling. This, in turn, stabilizes the androgen receptor functions in prostate cancer cells. The stroma-derived HGF induces a lipid raft-associated signaling complex that contains CD44v9, cMet/phosphatidylinositol 3-kinase, HSP90 and androgen receptor. CD44v9/short hairpin RNA reverses the assembly of these components in the complex and inhibits androgen receptor function. Our results provide new insight into the hyaluronan/CD44v9-regulated androgen receptor function and the consequent malignant activities in prostate cancer cells. The present study describes a physiologically relevant in vitro model for studying the molecular mechanisms by which stroma-derived HGF and hyaluronan influence androgen receptor and CD44 functions in the secretory epithelia during prostate carcinogenesis.
Keywords:Cytokine  Hyaluronate  Lipid Raft  Phosphatidylinositol 3-Kinase  Receptor Tyrosine Kinase  shRNA  siRNA  Stromal Cell  Tumor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号