首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of platelet-activating factor by endothelial cells. The role of G proteins
Authors:R E Whatley  D F Fennell  J A Kurrus  G A Zimmerman  T M McIntyre  S M Prescott
Affiliation:Department of Medicine, University of Utah School of Medicine, Salt Lake City 84112.
Abstract:Production of the potent lipid autacoid, platelet-activating factor (PAF), is a stimulated response of the endothelium which has important physiologic consequences including mediating adherence of inflammatory cells to the endothelium. Consequently, an understanding of the mechanisms that regulate PAF synthesis by the endothelium is important. To this end, we investigated the role of G proteins as a component of the signal transduction pathway that couples hormonal stimuli to PAF production. The addition of aluminum fluoride (AlF-4) to endothelial cells resulted in production of PAF with a maximal effect at 20 mM fluoride and within 20-60 min of exposure. Alf-4 also augmented the production of PAF which occurs in response to hormonal agonists. In addition, submaximal concentrations of AlF-4 converted an ineffective hormonal agonist (thrombin in bovine cells) to a maximally effective agonist. The adherence of neutrophils to endothelial cells that had been exposed previously to AlF-4 was increased in a manner that paralleled PAF production. PAF production in response to AlF-4 was not consistently affected by pertussis or cholera toxin. Introduction of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) into permeabilized endothelial cells also resulted in PAF production, with reversal by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), consistent with an effect mediated by a G protein. G protein activation with AlF-4 or GTP gamma S resulted in entry of extracellular Ca2+ as determined using 45Ca2+ flux studies and Indo-1 spectrofluorometry. Our data are consistent with the hypothesis that G proteins couple hormone-receptor binding to opening of a membrane calcium channel, a key step in the initiation of PAF production in endothelial cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号