首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of selenium compounds on selenium content, growth and 35S-cystine metabolism of skin fibroblasts from normal and cystinotic individuals.
Authors:W J Rhead  J A Schneider
Abstract:Kidney samples from children with the inborn metabolic disease cystinosis contain 4 times more selenium (Se) than do kidney samples from normal individuals (p = 0.1). However, when cultured skin fibroblasts from cystinotic patients and normal control individuals are incubated in Se-D,L-methionine, Se-D,L-cystine, Se-cystamine X HCl, Se-urea, selenite or in medium without added selenium, only the cystinotic fibroblasts grown in Se-urea or selenite (SeO3=) contain more selenium than do the corresponding normal cells (p less than 0.05). In both types of cultured fibroblasts, the order of descending toxicity per ppm selenium is: Se-urea greater than Se-cystamine greater than Se-cystine greater than or equal to SeO3= much greater than Se-methionine. High (apparently toxic) concentrations of Se-urea and Se-cystamine lower the elevated intracellular free (nonprotein) cystine content of cystinotic fibroblasts to less than 60% of control values; at lower concentrations, these compounds raise the cystine content of these cells to over 140% of control values. Appropriate concentrations of SeO3=, Se-cystine and Se-methionine also elevate the free cystine content of the cystinotic cells. During a 75 minute incubation in 35S-cystine, the incorporation of 35S into the acid precipitable (protein) fraction of both cell types is significantly inhibited by Se-cystamine (approximately 55% control; p less than 0.05). The incorporation of 35S-cystine into glutathione is inhibited by Se-cystine (approximately 40% control) in both fibroblast types (p less than 0.05). In cystinotic cells, Se-cystamine significantly reduces incorporation of 35S-cystine into the cystine pool (40% control) as does SeO3= (67% control; p less than 0.05). Protein and glutathione synthesis in cystinotic fibroblasts are more strongly inhibited by Se-cystine and SeO3=, respectively, than in normal fibroblasts (p less than 0.05). These studies demonstrate that selenium compounds exhibit a different sequence of toxicity in fibroblasts than in the intact animal and that some previously unreported metabolic effects (i.e. inhibition of glutathione synthesis) may contribute to their toxicity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号