首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Helix-helix interactions and their impact on protein motifs and assemblies
Authors:Natalya Kurochkina
Institution:Department of Biophysics, The School of Theoretical Modeling, P.O. Box 15676, Chevy Chase, MD 20825, USA
Abstract:Protein secondary structure elements are arranged in distinct structural motifs such as four-α-helix bundle, 8α/8β TIM-barrel, Rossmann dinucleotide binding fold, assembly of a helical rod. Each structural motif is characterized by a particular type of helix-helix interactions. A unique pattern of contacts is formed by interacting helices of the structural motif. In each type of fold, edges of the helix surface, which participate in the formation of helix-helix contacts with preceding and following helices, differ. This work shows that circular arrangements of the four, eight, and sixteen α-helices, which are found in the four-α-helical motif, TIM-barrel 8α/8β fold, and helical rod of 16.3¯ helices per turn correspondingly, can be associated with the mutual positioning of the edges of the helix surfaces. Edges (i, i+1)−(i+1, i+2) of the helix surface are central for the interhelical contacts in a four-α-helix bundle. Edges (i, i+1)−(i+2, i+3) are involved in the assembly of four-α-helix subunits into helical rod of a tobacco mosaic virus and a three-helix fragment of a Rossmann fold. In 8α/8β TIM-barrel fold, edges (i, i+1)−(i+5, i+6) are involved in the octagon arrangement. Approximation of a cross section of each motif with a polygon (n-gon, n=4, 8, 16) shows that a good correlation exists between polygon interior angles and angles formed by the edges of helix surfaces.
Keywords:Helix interactions  Heptad repeat  Protein conformation  Structural motif  Protein assembly
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号