首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ionic selectivity of the paracellular shunt path across rabbit corneal endothelium
Authors:Jong J Lim  Larry S Liebovitch  Jorge Fischbarg
Institution:1. Department of Opthalmology, College of Physicians and Surgeons, Columbia University, 10032, New York, New York
2. Department of Physiology, College of Physicians and Surgeons, Columbia University, 10032, New York, New York
Abstract:We have measured the dilution and biionic potentials across the isolated rabbit corneal endothelium in order to learn about the ionic selectivity of its intercellular junctions. Single-salt dilution potentials have been measured as a function of NaCl] or NaHCO3] gradients across the tissue. Biionic potentials were similarly measured by replacing Na+ with K+ on either side of the tissue. The potentials thus measured were fit to the constant field equation and to an approximation of it to obtain the ionic permeabilities for K+, HCO-3 and Cl- relative to Na+. The permeability sequence obtained was PK greater than PNa greater than PHCO3 approximately equal to PCl. Potentials were also measured after imposing an osmotic gradient across the preparation using sucrose. The results obtained with all these methods are consistent and suggest that this tissue is slightly more permeant to cations than anions, but that the selectivity of the intercellular junction is relatively low. From these experiments, a 30 mM gradient of salt across the endothelial layer would be needed in order to explain the observed spontaneous potential difference (about 1 mV, aqueous negative) across that layer if the potential was due to the selectivity of the intercellular junctions. Such a value for the gradient is much larger than theoretical estimates of it; therefore, we favor electrogenic transport of HCO-3 as a better explanation for the origin of the spontaneous potential difference.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号