首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sequencing complex diseases With HapMap
Authors:Liu Tian  Johnson Julie A  Casella George  Wu Rongling
Institution:Department of Statistics, University of Florida, Gainesville 32611, USA.
Abstract:Determining the patterns of DNA sequence variation in the human genome is a useful first step toward identifying the genetic basis of a common disease. A haplotype map (HapMap), aimed at describing these variation patterns across the entire genome, has been recently developed by the International HapMap Consortium. In this article, we present a novel statistical model for directly characterizing specific sequence variants that are responsible for disease risk based on the haplotype structure provided by HapMap. Our model is developed in the maximum-likelihood context, implemented with the EM algorithm. We perform simulation studies to investigate the statistical properties of this disease-sequencing model. A worked example from a human obesity study with 155 patients was used to validate this model. In this example, we found that patients carrying a haplotype constituted by allele Gly16 at codon 16 and allele Gln27 at codon 27 genotyped within the beta2AR candidate gene display significantly lower body mass index than patients carrying the other haplotypes. The implications and extensions of our model are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号