首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of membrane fatty acyl composition on LDL metabolism in Hep G2 hepatocytes
Authors:P Kuo  M Weinfeld  J Loscalzo
Affiliation:Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.
Abstract:The mechanism by which dietary cis-unsaturated fatty acids lower plasma levels of low-density lipoprotein (LDL) cholesterol is unknown. Since plasma membrane incorporation of dietary cis-unsaturated fatty acids is known to alter the function of plasma membrane associated proteins, perhaps by increasing membrane fluidity, we examined LDL receptor function in Hep G2 hepatocytes that were unmodified, enriched with the cis-unsaturated fatty acids oleate or linoleate, or enriched with the saturated fatty acids stearate or palmitate. Hepatocytes enriched in cis-unsaturated fatty acids exhibited augmented LDL binding, uptake, and degradation in comparison to unmodified cells. In contrast, Hep G2 hepatocytes enriched in saturated fatty acids had decreased LDL binding, uptake, and degradation. Enrichment with oleate or linoleate resulted in a decrease in the calculated fatty acyl mole-weighted melting point of the plasma membrane and an increase in plasma membrane fluidity, as measured by the steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene incorporated into the plasma membrane. Conversely, stearate or palmitate enrichment resulted in an increased plasma membrane fatty acyl mole-weighted melting point and decreased plasma membrane fluidity. LDL binding, uptake, and degradation varied with plasma membrane fluidity in a highly correlated manner. Thus, one mechanism by which dietary cis-unsaturated fatty acids lower LDL cholesterol may possibly involve an alteration in membrane lipid composition or membrane fluidity that promotes enhanced LDL receptor function, thereby leading to increased hepatic clearance of LDL.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号