首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic network and pathway analysis of differentially expressed proteins during critical cellular events in fracture repair
Authors:Li Xinmin  Wang Hali  Touma Edward  Rousseau Emma  Quigg Richard J  Ryaby James T
Affiliation:College of Animal Science & Technology, Shanxi Agricutural University, Taigu, Shanxi 030801, People's Republic of China.
Abstract:Bone repair consists of inflammation, intramembranous ossification, chondrogenesis, endochondral ossification, and remodeling. To better understand the translational regulation of these distinct but interrelated cellular events, we used the second generation of BD Clontechtrade mark Antibody Microarray to dissect and functionally characterize proteins differentially expressed between intact and fractured rat femur at each of these cellular events. Genetic network analysis showed that proteins differentially expressed within a given cellular event tend to be physically or functionally correlated. Seventeen such interacting networks were established over five cellular events that were most frequently associated with cell cycle, cell death, cell-to-cell signaling and interaction, and cell growth and proliferation. Eighteen molecular pathways were significantly enriched during the bone repair process, of which ERK/MAPK, NF-kB, PDGF, and T-cell receptor signaling pathways were significant during three or more cellular events. The analyses revealed dynamic temporal expression patterns and cellular-event-specific functions. The inflammation event on Day 1 was characteristic of the cell cycle-related molecular changes. The relative quiet stage of intramembranous ossification on Day 4 and the molecularly most active stage of chondrogenesis on Day 7 were featured by coordinated cell death and cell-proliferation signals. Endochondral ossification on Day 14 experienced a clear transition from the molecular/cellular function to the physiological system development/function. The osteoclast-mediated remodeling on Day 28 was highlighted by the integrin signaling pathway. The distinct changes in protein expression during these cellular events provide a molecular basis for developing cellular event-targeted therapeutic strategy to accelerate bone healing.
Keywords:protein expression profile  pathway analysis  bone repair  rat
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号