首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ATP analogues induce membrane permeabilization in transformed mouse fibroblasts
Authors:R Arav  I Friedberg
Abstract:The mechanism underlying ATP-induced permeabilization of transformed mouse fibroblasts was studied by using nonhydrolyzable analogues of ATP. Incubation of 3T6 cells with 0.6 mM of either ATP, 5'-adenylyl imidodiphosphate (pNH]ppA) or adenosine 5'-beta, gamma-methylene]triphosphate (pCH2]ppA) resulted in an increase of 17-, 8- or 5-times, respectively, in the cell membrane permeability, measured by the efflux of normally impermeant metabolites from the cells. The induced cell permeabilization was preceded by a reduction in the membrane potential (delta psi), determined according to the distribution of the cation tetraphenylphosphonium (TPP+) between the cells and the medium. Reduction of 26, 18 and 13 mV in delta psi was exerted by 0.6 mM of either ATP, pNH]ppA or pCH2]ppA, respectively. In 3T3 cells the untransformed counterparts of 3T6 cells, neither reduction of delta psi, nor alterations in membrane permeability were exerted by either ATP or by its analogues. The data indicate that the dissociation of the beta, gamma-phosphate bond is not essential for membrane permeabilization by external ATP, implying that the binding of ATP to the cell surface of transformed cells is sufficient to initiate the permeabilization process. The data also suggest that delta psi is involved in the control of membrane permeability.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号