首页 | 本学科首页   官方微博 | 高级检索  
     


Most Powerful Permutation Invariant Tests for Relatedness Hypotheses Using Genotypic Data
Authors:Anthony Almudevar
Affiliation:Department of Mathematics and Computing Science, St. Mary's University, Halifax, Nova Scotia, Canada. anthony.almudevar@stmarys.ca
Abstract:The problem of inferring kinship structure among a sample of individuals using genetic markers is considered with the objective of developing hypothesis tests for genetic relatedness with nearly optimal properties. The class of tests considered are those that are constrained to be permutation invariant, which in this context defines tests whose properties do not depend on the labeling of the individuals. This is appropriate when all individuals are to be treated identically from a statistical point of view. The approach taken is to derive tests that are probably most powerful for a permutation invariant alternative hypothesis that is, in some sense, close to a null hypothesis of mutual independence. This is analagous to the locally most powerful test commonly used in parametric inference. Although the resulting test statistic is a U-statistic, normal approximation theory is found to be inapplicable because of high skewness. As an alternative it is found that a conditional procedure based on the most powerful test statistic can calculate accurate significance levels without much loss in power. Examples are given in which this type of test proves to be more powerful than a number of alternatives considered in the literature, including Queller and Goodknight's (1989) estimate of genetic relatedness, the average number of shared alleles (Blouin, 1996), and the number of feasible sibling triples (Almudevar and Field, 1999).
Keywords:Conditional tests    Genotypic data    Most powerful invariant test    Relatedness inference
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号