首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake
Authors:Ahmed Gaballa  Christine Baysse  Nico Koedam  Serge Muyldermans  & Pierre Cornelis
Institution:Department of Immunology, Parasitology, and Ultrastructure, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussels, Belgium.,;Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium.,
Abstract:The inner membrane protein CcmC (CytA) of Pseudomonas fluorescens ATCC17400, which has homologues in several bacteria and plant mitochondria, is needed for the biogenesis of cytochrome c . A CcmC-deficient mutant is also compromised in the production and utilization of pyoverdine, the high-affinity fluorescent siderophore. A topological model for CcmC, based on the analysis of alkaline phosphatase fusions, predicts six membrane-spanning regions with three periplasmic loops. Site-directed mutagenesis was used in order to assess the importance of some periplasm-exposed residues, conserved in all CcmC homologues, for cytochrome c biogenesis, and pyoverdine production/utilization. Despite the conservation of the residues His-61, Val-62 and Pro-63 in the first periplasmic loop, and Leu-184, His-185 and Gln-186 in the third periplasmic loop, their simultaneous replacement with Ala only partially affected cytochrome c biogenesis and pyoverdine production/utilization. Simultaneous replacements of residues Trp-115 and Gly-116 in the second periplasmic loop substantially affected pyoverdine production/utilization but not cytochrome c production. An Ala substitution of Asp-127, in the second periplasmic loop, resulted in decreased production of cytochrome c , slower growth in conditions of anaerobiosis and reduced pyoverdine production. On the other hand, a mutation in Trp-126, also in the second periplasmic loop, totally suppressed the production of cytochrome c , whereas it had no effect on the production and utilization of pyoverdine. These results show a differential involvement of amino acid residues in periplasmic domains of CcmC in cytochrome c biogenesis and pyoverdine production/utilization.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号