首页 | 本学科首页   官方微博 | 高级检索  
   检索      


N-Acylethanolamines: Formation and Molecular Composition of a New Class of Plant Lipids
Authors:Kent D Chapman  Swati Tripathy  Barney Venables  and Arland D Desouza
Institution:Department of Biological Sciences, Division of Biochemistry and Molecular Biology, University of North Texas, Denton, Texas 76203–5220 (K.D.C., S.T., A.D.D.);TRAC Laboratories, 113 South Cedar, Denton, Texas 76201 (B.V.)
Abstract:Recently, the biosynthesis of an unusual membrane phospholipid, N-acylphosphatidylethanolamine (NAPE), was found to increase in elicitor-treated tobacco (Nicotiana tabacum L.) cells (K.D. Chapman, A. Conyers-Hackson, R.A. Moreau, S. Tripathy 1995] Physiol Plant 95: 120–126). Here we report that before induction of NAPE biosynthesis, N-acylethanolamine (NAE) is released from NAPE in cultured tobacco cells 10 min after treatment with the fungal elicitor xylanase. In radiolabeling experiments 14C]NAE (labeled on the ethanolamine carbons) increased approximately 6-fold in the culture medium, whereas 14C]NAPE associated with cells decreased approximately 5-fold. Two predominant NAE molecular species, N-lauroylethanolamine and N-myristoylethanolamine, were specifically identified by gas chromatography-mass spectrometry in lipids extracted from culture medium, and both increased in concentration after elicitor treatment. NAEs were found to accumulate extracellularly only. A microsomal phospholipase D activity was discovered that formed NAE from NAPE; its activity in vitro was stimulated about 20-fold by mastoparan, suggesting that NAPE hydrolysis is highly regulated, perhaps by G-proteins. Furthermore, an NAE amidohydrolase activity that catalyzed the hydrolysis of NAE in vitro was detected in homogenates of tobacco cells. Collectively, these results characterize structurally a new class of plant lipids and identify the enzymatic machinery involved in its formation and inactivation in elicitor-treated tobacco cells. Recent evidence indicating a signaling role for NAPE metabolism in mammalian cells (H.H.O. Schmid, P.C. Schmid, V. Natarajan 1996] Chem Phys Lipids 80: 133–142) raises the possibility that a similar mechanism may operate in plant cells.NAPE is a widespread, albeit minor, membrane phospholipid in animal and plant tissues (Schmid et al., 1990; Chapman and Moore, 1993). Its unusual structural features (a third fatty acid moiety linked to the amino head group of PE) impart stabilizing properties to membrane bilayers (Domingo et al., 1994; LaFrance et al., 1997). NAPE and its hydrolysis products, NAEs, are known to accumulate in vertebrate tissues under pathological conditions (for review, see Schmid et al., 1990). Recently, there has been renewed interest in NAEs because of the contention that anandamide (N-arachidonylethanolamine) is an endogenous ligand for the cannabinoid receptor in mammalian brain (Devane et al., 1992; Fontana et al., 1995; Schmid et al., 1996). The likely route for NAE formation in neural and nonneural tissues, although the matter of some debate, is via the signal-mediated hydrolysis of NAPE (DiMarzo et al., 1994; Schmid et al., 1996; Sugiura, et al., 1996).In plants little is known regarding the catabolism of NAPE. In cottonseed microsomes NAPE was metabolized to NAE or NAlysoPE by PLD- or PLA-type activities, respectively (Chapman et al., 1995b). However, the metabolic fate of NAPE in vivo and the factors that regulate NAPE hydrolysis remain largely unknown. We previously noted that the biosynthesis of NAPE was increased in elicitor-treated cell suspensions of tobacco (Nicotiana tabacum L.). Here we extend our investigations with this model system to examine NAPE catabolism by plant cells in vivo. NAE was released from NAPE, and it accumulated extracellularly. We identified by GC-MS these tobacco NAEs as N-lauroylethanolamine and N-myristoylethanolamine. These NAEs were increased in elicitor-treated cell suspensions. Furthermore, we detected the enzymatic machinery capable of the release and the degradation of NAEs in tobacco cells. To our knowledge this represents the first identification of the NAE molecular species in plant cells. It is tempting to speculate that NAPE hydrolysis in elicitor-treated plant cells may be involved in a signaling pathway analogous to that found in mammalian cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号