Affiliation: | Departments of Electron Microscope and Bioenergetics, Laboratory of Bioorganic Chemistry, Moscow State University, Moscow, U.S.S.R. |
Abstract: | The role of oncotic pressure (i.e. pressure created by non-penetrants of high molecular weight) in structural responses of mitochondria has been studied. It has been found that treatment of beef of rabbit heart mitochondria by a synthetic non-penetrant of high molecular weight, polyvinyl pyrrolidone, induces a decrease in the intermembrane (intracristal) space and an increase in the matrix space of mitochondria. As a result, the appearance of the in vitro mitochondria proves to be similar to that of the in situ ones. If a Waring blender is used to homogenize the tissue, only a portion of the mitochondria respond to polyvinyl pyrrolidone. If a glass-Teflon homogenizer is used instead all the mitochondria prove responsive. The addition of 0.5 mM polyvinyl pyrrolidone is found to be sufficient for the effect to be observable. In the presence of polyvinyl pyrrolidone, energy-dependent changes in mitochondrial structure can be demonstrated. The increase in matrix space by polyvinyl pyrrolidone treatment enlarges even more when an energy source, a penetrating weak acid and a penetrating cation are added. The size of the matrix increases in the following order: (1) de-energized mitochondria without polyvinyl pyrrolidone, (2) de-energized + polyvinyl pyrrolidone, (3) energized + polyvinyl pyrrolidone, (4) as (3) + phosphate (“twisted” configuration of cristae), (5) as (3) + phosphate + Ca2+. Structural changes resembling those indicated in points (2)–(5) are shown for mitochondria in the tissue, when pieces of rat diaphragm muscle treated with an uncoupler, phosphate, and Ca2+ were studied in conditions excluding anaerobiosis. The effect of polyvinyl pyrrolidone is suggested to be due to it balancing the oncotic pressure created by high molecular weight compounds dissolved in the intermembrane water, which are incapable of penetrating the outer mitochondrial membrane. A concept is discussed considering mitochondrial structure changes as a function of the osmotic gradient across the inner membrane and the oncotic gradient across the outer membrane of mitochondria. |