首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Different modes of sodium-D-glucose cotransporter-mediated D-glucose uptake regulation in Caco-2 cells
Authors:Khoursandi Saeed  Scharlau Daniel  Herter Peter  Kuhnen Cornelius  Martin Dirk  Kinne Rolf K H  Kipp Helmut
Institution:Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
Abstract:We recently reported that a considerable amount of the sodium-D-glucose cotransporter SGLT1 present in Caco-2 cells, a model for human enterocytes, is located in intracellular compartments attached to microtubules (Kipp H, Khoursandi S, Scharlau D, and Kinne RKH. Am J Physiol Cell Physiol 285: C737–C749, 2003). A similar distribution pattern was also observed in enterocytes in thin sections from human jejunum, highlighting the validity of the Caco-2 cell model. Fluorescent surface labeling of live Caco-2 cells revealed that the intracellular compartments containing SGLT1 were accessible by endocytosis. To elucidate the role of endosomal SGLT1 in the regulation of sodium-dependent D-glucose uptake into enterocytes, we compared SGLT1-mediated D-glucose uptake into Caco-2 cells with the subcellular distribution of SGLT1 after challenging the cells with different stimuli. Incubation (90 min) of Caco-2 cells with mastoparan (50 µM), a drug that enhances apical endocytosis, shifted a large amount of SGLT1 from the apical membrane to intracellular sites and significantly reduced sodium-dependent {alpha}-14C]methyl-D-glucose uptake (–60%). We also investigated the effect of altered extracellular D-glucose levels. Cells preincubated (1 h) with D-glucose-free medium exhibited significantly higher sodium-dependent {alpha}-14C]methyl-D-glucose uptake (+45%) than did cells preincubated with high D-glucose medium (100 mM, 1 h). Interestingly, regulation of SGLT1-mediated D-glucose uptake into Caco-2 cells by extracellular D-glucose levels occurred without redistribution of cellular SGLT1. These data suggest that, pharmacologically, D-glucose uptake can be regulated by a shift of SGLT1 between the plasma membrane and the endosomal pool; however, regulation by the physiological substrate D-glucose can be explained only by an alternative mechanism. endosomes; enterocytes
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号