首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Counter-regulation of insulin-stimulated glucose transport by catecholamines in the isolated rat adipose cell
Authors:U Smith  M Kuroda  I A Simpson
Abstract:The interaction between catecholamines and insulin in regulating glucose transport in isolated rat adipose cells has been evaluated. In the absence of insulin, 1 microM isoproterenol stimulates 3-O-methylglucose transport approximately 2-fold. However, isoproterenol in combination with adenosine deaminase inhibits glucose transport activity approximately 60%. N6-Phenylisopropyladenosine, a nonmetabolizable adenosine analogue, substantially reverses this inhibitory effect and actually stimulates glucose transport activity approximately 2-fold in the absence of isoproterenol. Dibutyryl cAMP inhibits glucose transport activity approximately 75% regardless of adenosine deaminase. While none of these agents significantly influences the basal concentration of plasma membrane glucose transporters, as assessed by specific D-glucose-inhibitable cytochalasin B binding, isoproterenol or dibutyryl cAMP in combination with adenosine deaminase reduces that in the low density microsomes 19 and 58%, respectively. In the presence of insulin, both isoproterenol and adenosine deaminase alone inhibit glucose transport activity approximately 25%. However, only the latter is accompanied by a corresponding decrease in the insulin-stimulated concentration of plasma membrane glucose transporters. Together, isoproterenol and adenosine deaminase inhibit insulin-stimulated glucose transport activity approximately 75%, even in the presence of 5 mM glucose to maintain cellular ATP levels. A similar inhibition is observed with dibutyryl cAMP. However, these agents decrease the insulin-stimulated concentration of plasma membrane glucose transporters only approximately 45%. Nevertheless, all of these inhibitory effects occur through decreases in the transport Vmax. In addition, N6-phenylisopropyladenosine partially reverses the inhibitory effects induced by the presence of adenosine deaminase. These results suggest that catecholamines counter-regulate basal and insulin-stimulated glucose transport in rat adipose cells through a cAMP-mediated mechanism, but only in part by modulating the translocation of glucose transporters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号