首页 | 本学科首页   官方微博 | 高级检索  
     


RNase E is required for induction of the glutamate-dependent acid resistance system in Escherichia coli
Authors:Takada Ayako  Umitsuki Genryou  Nagai Kazuo  Wachi Masaaki
Affiliation:Department of Bioengineering, Tokyo Institute of Technology, Japan.
Abstract:The Escherichia coli RNase E is an essential endoribonuclease involved in processing and/or degradation of rRNAs, tRNAs, and non-coding small RNAs as well as many mRNAs. It is known that RNase E activity is somehow regulated by an RNA-binding protein Hfq, at least in some cases. We searched for proteins that showed changes in expression in both hfq::cat and rne-1 mutant cells as compared with the wild type, and found that a protein band of 49-kDa decreased in these mutant cells at 42 degrees C, the restrictive temperature for rne-1. N-terminal amino acid sequencing identified it as a mixture of GadA and GadB, two isozymes of glutamate decarboxylase involved in glutamate-dependent acid resistance. The rne-1 mutant as well as the hfq mutant showed decreased survival under acidic conditions (pH 2.5). Hfq is known to regulate the expression of GadA/B in RpoS- and GadY small RNA-dependent ways. We examined the expression of these two regulators in rne-1 mutant cells. In the mutant cells, the induction of GadY was defective at 42 degrees C, but the expression of RpoS was normal. These results indicate that RNase E is required for induction of the glutamate-dependent acid resistance system in a RpoS-independent manner.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号