首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cloning and expression of succinic semialdehyde reductase from human brain. Identity with aflatoxin B1 aldehyde reductase.
Authors:M Schaller  M Schaffhauser  N Sans  B Wermuth
Institution:Department of Clinical Chemistry, University of Berne, Inselspital, Berne, Switzerland.
Abstract:The neuromodulator gamma-hydroxybutyrate is synthesized in vivo from gamma-aminobutyrate by transamination to succinic semialdehyde and subsequent reduction of the aldehyde group. In human brain, succinic semialdehyde reductase is thought to be responsible for the conversion of succinic semialdehyde to gamma-hydroxybutyrate. In the present work, we cloned the cDNA coding for succinic semialdehyde reductase and expressed it in Escherichia coli. A data bank search indicated that the enzyme is identical with aflatoxin B1-aldehyde reductase, an enzyme implicated in the detoxification of xenobiotic carbonyl compounds. Structurally, succinic semialdehyde reductase thus belongs to the aldo-keto reductase superfamily. The recombinant protein was indistinguishable from native human brain succinic semialdehyde reductase by SDS/PAGE. In addition to succinic semialdehyde, it readily catalyzed the reduction 9,10-phenanthrene quinone, phenylglyoxal and 4-nitrobenzaldehyde, typical substrates of aflatoxin B1 aldehyde reductase. The results suggest multiple functions of succinic semialdehyde reductase/aflatoxin B1 aldehyde reductase in the biosynthesis of gamma-hydroxybutyrate and the detoxification of xenobiotic carbonyl compounds, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号