首页 | 本学科首页   官方微博 | 高级检索  
     


Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging
Authors:Lochner Janis E  Honigman Leah S  Grant Wilmon F  Gessford Sarah K  Hansen Alexis B  Silverman Michael A  Scalettar Bethe A
Affiliation:Department of Chemistry, Lewis & Clark College, Portland, OR 97219, USA. Lochner@LClark.edu
Abstract:Tissue plasminogen activator (tPA) has been implicated in a variety of important cellular functions, including learning-related synaptic plasticity and potentiating N-methyl-D-aspartate (NMDA) receptor-dependent signaling. These findings suggest that tPA may localize to, and undergo activity-dependent secretion from, synapses; however, conclusive data supporting these hypotheses have remained elusive. To elucidate these issues, we studied the distribution, dynamics, and depolarization-induced secretion of tPA in hippocampal neurons, using fluorescent chimeras of tPA. We found that tPA resides in dense-core granules (DCGs) that traffic to postsynaptic dendritic spines and that can remain in spines for extended periods. We also found that depolarization induced by high potassium levels elicits a slow, partial exocytotic release of tPA from DCGs in spines that is dependent on extracellular Ca(+2) concentrations. This slow, partial release demonstrates that exocytosis occurs via a mechanism, such as fuse-pinch-linger, that allows partial release and reuse of DCG cargo and suggests a mechanism that hippocampal neurons may rely upon to avoid depleting tPA at active synapses. Our results also demonstrate release of tPA at a site that facilitates interaction with NMDA-type glutamate receptors, and they provide direct confirmation of fundamental hypotheses about tPA localization and release that bear on its neuromodulatory functions, for example, in learning and memory.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号