首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrogen addition drives convergence of leaf litter decomposition rates between <Emphasis Type="Italic">Flaveria bidentis</Emphasis> and native plant
Authors:Chao-he Huangfu  Zi-shang Wei
Institution:1.Agro-Environmental Protection Institute, Ministry of Agriculture,Tianjin,China;2.College of Plant Protection,Shenyang Agriculture University,Shenyang,China;3.School of Resources and Environmental Engineering,Anhui University,Hefei,China
Abstract:Evidence is growing that invasive species can change decomposition rates and associated nutrient cycling within an ecosystem by changing the quality of the litter entering a system. However, the relative contribution of their distinct litter types to carbon turnover is less understood, especially in the context of enhanced N deposition. The objective of this study was to investigate the whole-plant responses of an invasive plant Flaveria bidentis in litter decay to simulated N eutrophication. A 1-year study was conducted to assess if N enhancement influenced decomposition and nutrient dynamics of litters from foliage, fine roots and twigs of F. bidentis compared to co-occurring native species Setaria viridis. N fertilization significantly decreased the decomposition rate of the foliage of the invasive F. bidentis by more than 25% relative to the water control, but had relatively minor effects on decomposition of its twigs and fine root litter or leaf litter from the native species. Collectively, decomposition rates of foliar litters of the invasive and native species become convergent over time in the presence of N addition. Moreover, net N loss was predominately influenced by litter species, followed by the litter type, while N addition had little effect on net N loss. Our study showed that the variation in litter decomposition was much greater between litter types of the invasive F. bidentis than between different plant species under the N addition and that the litter of invasive species with higher inherent decomposability did not always decompose more rapidly than the litter of native species in response to predicted N deposition enhancement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号