首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular modelling study of 2-phenylethynyladenosine (PEAdo) derivatives as highly selective A3 adenosine receptor ligands
Authors:Diego Dal Ben  Catia Lambertucci  Sara Taffi  Sauro Vittori  Rosaria Volpini  Gloria Cristalli  Karl-Norbert Klotz
Institution:(1) Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino, 1, 62032 Camerino, Italy
Abstract:A series of 2-phenylethynyladenosine (PEAdo) derivatives substituted in the N6- and 4′-position was synthesised and the new derivatives were tested at the four human adenosine receptors stably transfected into Chinese hamster ovary (CHO) cells, using radioligand binding studies (A1, A2A, A3) or adenylyl cyclase activity assay (A2B). Binding studies showed that the presence of a phenyl ethynyl group in the 2 position of adenosine favoured the interaction with A3 receptors, resulting in compounds endowed with high affinity and selectivity for the A3 subtype. Additional substitution of the N6- and 4′-position increases both A3 affinity and selectivity. The results showed that the new compounds have a good affinity for the A3 receptor and in particular, the N6-methoxy-2-phenylethynyl-5′-N-methylcarboxamidoadenosine, with a Ki at A3 of 1.9 nM and a selectivity A1/A3 and A2A/A3 of 4,800- and 8,600-fold, respectively. Therefore, it is one of the most potent and selective agonists at the human A3 adenosine receptor subtype reported so far. Furthermore, functional assays of inhibition of 10 μM forskolin-stimulated cAMP production via the adenosine A3 receptor revealed that the new trisubstituted adenosine derivatives behave as full agonist of this receptor subtype. Docking analysis of these compounds was performed at a homology model of the human A3 receptor based on the bovine rhodopsin crystal structure as template, and the results are in accordance with the biological data.An erratum to this article can be found at
Keywords:adenosine  adenosine agonists  adenosine receptors  agonists  G-protein-coupled receptors  homology modelling  signal transduction
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号