首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Covalent heterogeneity of the human enzyme galactose-1-phosphate uridylyltransferase
Authors:Henderson J M  Wells L  Fridovich-Keil J L
Institution:Graduate Program in Nutrition and Health Sciences, the Graduate Program in Biochemistry and Molecular Biology, and the Department of Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
Abstract:Galactose-1-phosphate uridylyltransferase (GALT) acts by a double displacement mechanism, catalyzing the second step in the Leloir pathway of galactose metabolism. Impairment of this enzyme results in the potentially lethal disorder, galactosemia. Although the microheterogeneity of native human GALT has long been recognized, the biochemical basis for this heterogeneity has remained obscure. We have explored the possibility of covalent GALT heterogeneity using denaturing two-dimensional gel electrophoresis and Western blot analysis to fractionate and visualize hemolysate hGALT, as well as the human enzyme expressed in yeast. In both contexts, two predominant GALT species were observed. To define the contribution of uridylylated enzyme intermediate to the two-spot pattern, we exploited the null allele, H186G-hGALT. The Escherichia coli counterpart of this mutant protein (H166G-eGALT) has previously been demonstrated to fold properly, although it cannot form covalent intermediate. Analysis of the H186G-hGALT protein demonstrated a single predominant species, implicating covalent intermediate as the basis for the second spot in the wild-type pattern. In contrast, three naturally occurring mutations, N314D, Q188R, and S135L-hGALT, all demonstrated the two-spot pattern. Together, these data suggest that uridylylated hGALT comprises a significant fraction of the total GALT enzyme pool in normal human cells and that three of the most common patient mutations do not disrupt this distribution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号