首页 | 本学科首页   官方微博 | 高级检索  
     


ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression
Authors:Jandhyala Dakshina M  Ahluwalia Amrita  Obrig Tom  Thorpe Cheleste M
Affiliation:Division of Geographic Medicine and Infectious Disease Tufts-New England Medical Center, Boston, MA 02111, USA.;
Department of Internal Medicine/Nephrology, University of Virginia, Charlottesville, VA 22908, USA.
Abstract:Shiga toxins (Stxs) and ricin initiate damage to host cells by cleaving a single adenine residue on the α-sarcin loop of the 28S ribosomal RNA. This molecular insult results in a cascade of intracellular events termed the ribotoxic stress response (RSR). Although Stxs and ricin have been shown to cause the RSR, the mitogen-activated protein kinase kinase kinase (MAP3K) that transduces the signal from intoxicated ribosomes to activate SAPKinases has remained elusive. We show in vitro that DHP-2 (7-[3-fluoro-4-aminophenyl-(4-(2-pyridin-2-yl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl))]-quinoline), a zipper sterile-α-motif kinase (ZAK)-specific inhibitor, blocks Stx2/ricin-induced SAPKinase activation. Treatment of cells with DHP-2 also blocks Stx2/ricin-mediated upregulation of the proinflammatory cytokine interleukin-8 and results in a modest but statistically significant improvement in cell viability following Stx2/ricin treatment. Finally we show that siRNA directed against the N-terminus of ZAK diminishes Stx2/Ricin-induced SAPKinase activation. Together, these data demonstrate that a ZAK isoform(s) is the MAP3Kinase that transduces the RSR. Therefore, ZAKα and/or β isoforms may act as potential therapeutic target(s) for treating Stx/ricin-associated illnesses. Furthermore, a small molecule inhibitor like DHP-2 may prove valuable in preventing the Stx/ricin-induced proinflammatory and/or apoptotic effects that are thought to contribute to pathogenesis by Stx-producing Escherichia coli and ricin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号