首页 | 本学科首页   官方微博 | 高级检索  
     


The metabolism in vitro and hepatic microsomal interactions of some enantiomeric drug substrates
Authors:David S. Hewick and James R. Fouts
Affiliation:Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa 52240, U.S.A.
Abstract:1. The metabolism in vitro and microsomal interactions of (+)-amphetamine, (-)-amphetamine, (+)-benzphetamine and (-)-benzphetamine were studied with hepatic microsomes from phenobarbitone-pretreated male rabbits. 2. (+)-Benzphetamine was N-demethylated 30-35% faster than (-)-benzphetamine, but the apparent Michaelis constants for the two enantiomers were similar. 3. (-)-Amphetamine was deaminated about 200% faster than (+)-amphetamine. 4. The benzphetamine enantiomers gave qualitatively and quantitatively identical type I microsomal difference spectra (peak, 390nm; trough, 425nm) indicating identical apparent binding affinities for microsomes and identical spectral changes at maxima (DeltaE(max.) values). 5. The amphetamine enantiomers gave qualitatively identical type II microsomal difference spectra (peak, 433nm; trough, 395nm). However, the type II spectral data indicated that (+)-amphetamine had a markedly higher apparent binding affinity than (-)-amphetamine for microsomes. The amphetamine enantiomers gave identical DeltaE(max.) values. 6. The benzphetamine enantiomers (0.5mm) enhanced the rate of microsomal cytochrome P-450 reduction by NADPH by 400-500%, (+)-benzphetamine enhancing the rate 20-25% more than (-)-benzphetamine. 7. The amphetamine enantiomers decreased the rate of microsomal cytochrome P-450 reduction by NADPH. At a concentration of 2mm, (+)-amphetamine decreased the rate more than (-)-amphetamine. 7. All four enantiomers enhanced microsomal NADPH oxidation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号