首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical characterization of the neuron. ATPase and acetylcholinesterase activities of neuronal cell bodies isolated in bulk from the pig brain stem.
Authors:S I Hasegawa  S Kaneko  M Okuda  S Araki  M Satake
Abstract:Nerve cell bodies, large and multipolar, were isolated in bulk with the least possible contamination from the pig brain stem. The activities of two neurobiologically important membrane enzymes, Na+, K+-ATPase, and acetylcholinesterase, in the isolated cell bodies were estimated. Na+, K+-ATPase EC 3.6.1.4], more accurately called ouabain-sensitive ATPase of the nerve cell body, hydrolyzed 94 micronmoles of ATP per h per 100 mg of protein. This activity was one-fourth that in the brain stem. Nerve cell bodies contained a large amount of Ca2+, 275 micronmoles per 100 mg of protein, about half of which was calculated to exist as compounds other than calcium orthophosphate. However, the Na+, K+-ATPase of the nerve cell bodies was not stimulated by EGTA, in contrast to that of the brain stem. Acetylcholinesterase EC 3.1.1.7] and cholinesterase EC 3.1.1.8] activities were estimated separately by the use of the specific inhibitors Persidol and BW 284C51 dibromide. Acetylcholinesterase was almost completely responsible for the hydrolysis of acetylcholine in the nerve cell bodies isolated from the brain stem and little cholinesterase activity was detected. 1300-1400 micronmoles of acetylcholine was hydrolyzed per h per 100 mg of protein of the neuronal cell bodies; this activity was about four times higher than that in the brain stem. The differences between the specific activities of Na+, K+-ATPase, and acetylcholinesterase in theneuronal cell bodies and the brain stem are discussed in the light of electron microscopic analysis of the distribution of these enzymes and the preservation of the plasma membrane of the isolated cell bodies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号