首页 | 本学科首页   官方微博 | 高级检索  
     


B cell translocation gene 2 enhances susceptibility of HeLa cells to doxorubicin-induced oxidative damage
Authors:Lim Young-Bin  Park Tae Jun  Lim In Kyoung
Affiliation:Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, Korea.
Abstract:BTG2/TIS21/PC3 (B cell translocation gene 2) has been known as a p53 target gene and functions as a tumor suppressor in carcinogenesis of thymus, prostate, kidney, and liver. Although it has been known that the expression of BTG2/TIS21/PC3 is induced during chemotherapy-mediated apoptosis in cancer cells, a role of BTG2/TIS21/PC3 in cell death remains to be elucidated. In this study, the mechanism and role of BTG2 involved in the enhancement of doxorubicin (DOXO)-induced cell death were examined. Treatment of HeLa cells with DOXO revealed apoptotic phenomena, such as chromatin condensation and cleavage of poly(ADP-ribose) polymerase and lamin A/C with concomitant increase of BTG2/TIS21/PC3 expression. Employing infections of Ad-TIS21 virus and lentivirus with short hairpin RNA to BTG2, the effect of BTG2/TIS21/PC3 on the DOXO-induced apoptosis of HeLa cells and liver cancer cells was evaluated. Not only short hairpin RNA-BTG2 but also N-acetyl-L-cysteine significantly reduced the DOXO-induced HeLa cell death and generation of H2O2. Moreover, forced expression of BTG2/TIS21/PC3 using adenoviral vector augmented DOXO-induced cancer cell death concomitantly with increase of manganese-superoxide dismutase but not catalase, CuZnSOD, and glutathione peroxidase 1. The increased apoptosis by forced expression of BTG2/TIS21/PC3 could be inhibited by N-acetyl-L-cysteine and polyethylene glycol-catalase. These results therefore suggest that BTG2/TIS21/PC3 works as an enhancer of DOXO-induced cell death via accumulation of H2O2 by up-regulating manganese-superoxide dismutase without any other antioxidant enzymes. In summary, BTG2/TIS21/PC3 enhances cancer cell death by accumulating H2O2 via imbalance of the antioxidant enzymes in response to chemotherapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号