首页 | 本学科首页   官方微博 | 高级检索  
     


Disulfide Bond Formation Significantly Accelerates the Assembly of Ure2p Fibrils because of the Proximity of a Potential Amyloid Stretch
Authors:Li Fei and Sarah Perrett
Affiliation:National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China and the §Graduate University of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
Abstract:Aggregation of the Ure2 protein is at the origin of the [URE3] prion trait in the yeast Saccharomyces cerevisiae. The N-terminal region of Ure2p is necessary and sufficient to induce the [URE3] phenotype in vivo and to polymerize into amyloid-like fibrils in vitro. However, as the N-terminal region is poorly ordered in the native state, making it difficult to detect structural changes in this region by spectroscopic methods, detailed information about the fibril assembly process is therefore lacking. Short fibril-forming peptide regions (4–7 residues) have been identified in a number of prion and other amyloid-related proteins, but such short regions have not yet been identified in Ure2p. In this study, we identify a unique cysteine mutant (R17C) that can greatly accelerate the fibril assembly kinetics of Ure2p under oxidizing conditions. We found that the segment QVNI, corresponding to residues 18–21 in Ure2p, plays a critical role in the fast assembly properties of R17C, suggesting that this segment represents a potential amyloid-forming region. A series of peptides containing the QVNI segment were found to form fibrils in vitro. Furthermore, the peptide fibrils could seed fibril formation for wild-type Ure2p. Preceding the QVNI segment with a cysteine or a hydrophobic residue, instead of a charged residue, caused the rate of assembly into fibrils to increase greatly for both peptides and full-length Ure2p. Our results indicate that the potential amyloid stretch and its preceding residue can modulate the fibril assembly of Ure2p to control the initiation of prion formation.The [URE3] phenotype of Saccharomyces cerevisiae arises because of conversion of the Ure2 protein to an aggregated propagatable prion state (1, 2). Ure2p contains two regions: a poorly structured N-terminal region and a compactly folded C-terminal region (3, 4). The N-terminal region is rich in Asn and Gln residues, is highly flexible, and is without any detectable ordered secondary structure (46). This region is necessary and sufficient for prion behavior in vivo (2) and amyloid-forming capacity in vitro (5, 7), so it is referred to as the prion domain (PrD).2 The C-terminal region has a fold similar to the glutathione S-transferase superfamily (8, 9) and possesses glutathione-dependent peroxidase activity (10). Upon fibril formation, the N-terminal region undergoes a significant conformational change from an unfolded to a thermally resistant conformation (11), whereas the glutathione S-transferase-like C-terminal domain retains its enzymatic activity, suggesting that little conformational change occurs (10, 12). Ure2p fibrils show various morphologies, including variations in thickness and the presence or absence of a periodic twist (1316). The overall structure of the fibrils imaged by cryoelectron microscopy suggests that the intact fibrils contain a 4-nm amyloid filament backbone surrounded by C-terminal globular domains (17).It is widely accepted that disulfide bonds play a critical role in maintaining protein stability (1821) and also affect the process of protein folding by influencing the folding pathway (2225). A recent study shows that the presence of a disulfide bond in a protein can markedly accelerate the folding process (26). Therefore, a disulfide bond is a useful tool to study protein folding. In the study of prion and other amyloid-related proteins, cysteine scanning has been widely used to study the structure of amyloid fibrils, the driving force of amyloid formation, and the plasticity of amyloid fibrils (13, 2731).Short segments from amyloid-related proteins, including IAPP (islet amyloid polypeptide), β2-microglobulin, insulin, and the amyloid-β peptide, show amyloid-forming capacity (3234). Hence, the amyloid stretch hypothesis has been proposed, which suggests that a short amino acid stretch bearing a highly amyloidogenic motif might supply most of the driving force needed to trigger the self-catalytic assembly process of a protein to form fibrils (35, 36). In support of this hypothesis, it was found that the insertion of an amyloidogenic stretch into a non-amyloid-related protein can trigger the amyloidosis of the protein (36). At the same time, the structural information obtained from microcrystals formed by amyloidogenic stretches and bearing cross-β-structure has contributed significantly to our understanding of the structure of intact fibrils at the atomic level (34, 37). However, no amyloidogenic stretches <10 amino acids have so far been identified in the yeast prion protein Ure2.In this study, we performed a cysteine scan within the N-terminal PrD of Ure2p and found a unique cysteine mutant (R17C) that eliminates the lag phase of the Ure2p fibril assembly reaction upon the addition of oxidizing agents. Furthermore, we identified a 4-residue region adjacent to Arg17 as a potential amyloid stretch in Ure2p.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号