首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acetylation/Deacetylation Modulates the Stability of DNA Replication Licensing Factor Cdt1
Authors:Michele A Glozak and  Edward Seto
Institution:Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
Abstract:Proper expression of the replication licensing factor Cdt1 is primarily regulated post-translationally by ubiquitylation and proteasome degradation. In a screen to identify novel non-histone targets of histone deacetylases (HDACs), we found Cdt1 as a binding partner for HDAC11. Cdt1 associates specifically and directly with HDAC11. We show that Cdt1 undergoes acetylation and is reversibly deacetylated by HDAC11. In vitro, Cdt1 can be acetylated at its N terminus by the lysine acetyltransferases KAT2B and KAT3B. Acetylation protects Cdt1 from ubiquitylation and subsequent proteasomal degradation. These results extend the list of non-histone acetylated proteins to include a critical DNA replication factor and provide an additional level of complexity to the regulation of Cdt1.To maintain genomic integrity, DNA replication must be tightly controlled to ensure that each portion of the genome replicates once and only once per cell cycle (reviewed in Ref. 1). Replication licensing begins by the formation of the prereplication complex at multiple potential origins of replication. This is established sequentially, with the origin recognition complex (ORC)2 proteins binding first, followed by the recruitment of Cdc6 and Cdt1, which in turn recruit the MCM2–7 proteins. MCM proteins act as the replicative helicase. The licensed replication origins are activated by cyclin-dependent kinases at the start of S phase. Licensing occurs throughout the cell cycle once S phase is complete.Cdt1 levels fluctuate throughout the cell cycle. It is destabilized at G1/S transition, and then levels begin to climb again upon S phase completion. To prevent licensing at inappropriate times, two separate processes regulate the inactivation or destruction of Cdt1. First, geminin negatively regulates Cdt1 function by prevention of the association of Cdt1 with MCM2–7 via steric hindrance (2). Interestingly, geminin also positively regulates Cdt1 by preventing its ubiquitylation, perhaps by prevention of its interaction with an E3 ligase. This allows Cdt1 to accumulate in G2 and M phases, to ensure adequate pools of Cdt1 to license the next cycle of replication (3). The ratio of geminin to Cdt1 likely determines whether geminin positively or negatively regulates Cdt1 (4). Second, Cdt1 is targeted for proteolysis by two distinct ubiquitin E3 ligases: the SCF-Skp2 complex and the DDB1-Cul4 complex (5). Phosphorylation by cyclin A/Cdk2 promotes interaction of Cdt1 with Skp2, leading to Cdt1 degradation during S phase (68). In addition, DDB1-Cul4 utilizes proliferating cell nuclear antigen as a binding platform to contact Cdt1, targeting the destruction of Cdt1 in S phase or following DNA damage (9, 10). Ubiquitylation by either of these E3 ligases promotes degradation of Cdt1 by the proteasome.Ubiquitylation occurs primarily (but not exclusively) on the ε-amino group of lysine residues. Another prominent post-translational modification that occurs on that residue is acetylation. Acetylation and, correspondingly, deacetylation can modulate the function and activity of a variety of proteins (see Ref. 11 for review). Here, we report that Cdt1 physically interacts with HDAC11, a class IV histone deacetylase (12, 13), as well as with several lysine acetyltransferases (KATs). We show that Cdt1 is an acetylated protein and further show that acetylation protects Cdt1 from ubiquitylation and subsequent proteasomal degradation. This study uncovers yet another layer of complexity to the regulation of the critical licensing factor Cdt1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号