首页 | 本学科首页   官方微博 | 高级检索  
     


Down-regulation of Mitochondrial Acyl Carrier Protein in Mammalian Cells Compromises Protein Lipoylation and Respiratory Complex I and Results in Cell Death
Authors:Dejiang Feng   Andrzej Witkowski     Stuart Smith
Affiliation:Children''s Hospital Oakland Research Institute, Oakland, California 94609
Abstract:The objective of this study was to evaluate the physiological importance of the mitochondrial fatty acid synthesis pathway in mammalian cells using the RNA interference strategy. Transfection of HEK293T cells with small interfering RNAs targeting the acyl carrier protein (ACP) component reduced ACP mRNA and protein levels by >85% within 24 h. The earliest phenotypic changes observed were a marked decrease in the proportion of post-translationally lipoylated mitochondrial proteins recognized by anti-lipoate antibodies and a reduction in their catalytic activity, and a slowing of the cell growth rate. Later effects observed included a reduction in the specific activity of respiratory complex I, lowered mitochondrial membrane potential, the development of cytoplasmic membrane blebs containing high levels of reactive oxygen species and ultimately, cell death. Supplementation of the culture medium with lipoic acid offered some protection against oxidative damage but did not reverse the protein lipoylation defect. These observations are consistent with a dual role for ACP in mammalian mitochondrial function. First, as a key component of the mitochondrial fatty acid biosynthetic pathway, ACP plays an essential role in providing the octanoyl-ACP precursor required for the protein lipoylation pathway. Second, as one of the subunits of complex I, ACP is required for the efficient functioning of the electron transport chain and maintenance of normal mitochondrial membrane potential.Eukaryotes employ two distinct systems for the synthesis of fatty acids de novo. The bulk of fatty acids destined for membrane biogenesis and energy storage are synthesized in the cytosolic compartment by megasynthases in which the component enzymes are covalently linked in very large polypeptides; this system is referred to as the type I fatty acid synthase (FAS)2 (1, 2). A second system localized in mitochondria is composed of a suite of discrete, freestanding enzymes that closely resemble their counterparts in prokaryotes (310), which are characterized as type II FASs (11). Most of the constituent enzymes of the mitochondrial fatty acid biosynthetic system have been identified and characterized in fungi and animals; all are nuclear-encoded proteins that are transported to the matrix compartment of mitochondria. Fungi with deleted mitochondrial FAS genes fail to grow on non-fermentable carbon sources, have low levels of lipoic acid and elevated levels of mitochondrial lysophospholipids (12, 13). These observations indicate that the mitochondrial FAS may serve to provide the octanoyl precursor required for the biosynthesis of lipoyl moieties de novo, as well as providing fatty acids that are utilized in remodeling of mitochondrial membrane phospholipids (14). The mitochondrial FAS system in animals is less well characterized. However, kinetic analysis of the β-ketoacyl synthase enzyme responsible for catalysis of the chain extension reaction in human mitochondria suggested that this system is uniquely engineered to produce mainly octanoyl moieties and has limited ability to form long-chain products (9). Indeed, studies with a reconstituted system from bovine heart mitochondrial matrix extracts confirmed that octanoyl moieties are the main product and are utilized for the synthesis of lipoyl moieties (15). One of the key components of the prokaryotic and mitochondrial FAS systems is a small molecular mass, freestanding protein, the ACP, that shuttles substrates and pathway intermediates to each of the component enzymes. The mitochondrial ACP is localized primarily in the matrix compartment (16), but a small fraction is integrated into complex I of the electron transport chain (1723). As is the case with many of the other 45 subunits of complex I, the role of the ACP subunit is unclear (24). To clarify the physiological importance of the mitochondrial FAS, and the mitochondrial ACP in particular, in mammalian mitochondrial function we have utilized an RNA interference strategy to knockdown the mitochondrial ACP in cultured HEK293T cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号