首页 | 本学科首页   官方微博 | 高级检索  
     


Quantification of Intermediates Formed during the Reduction of Nitrite by Deoxyhemoglobin
Authors:Maria T. Salgado   Enika Nagababu     Joseph M. Rifkind
Affiliation:Molecular Dynamics Section, NIA, National Institutes of Health, Baltimore, Maryland 21224
Abstract:Nitric oxide (NO) plays a crucial role in human physiology by regulating vascular tone and blood flow. The short life-span of NO in blood requires a mechanism to retain NO bioactivity in the circulation. Recent studies have suggested a mechanism involving the reduction of nitrite back to NO by deoxyhemoglobin in RBCs. A role for RBCs in transporting NO must, however, bypass the scavenging of NO in RBCs by hemoglobin. To understand how the nitrite reaction can deliver bioactive NO to the vasculature, we have studied the intermediates formed during the reaction. A reliable measure of the total concentration of heme-associated nitrite/NO intermediates formed was provided by combining filtration to measure free nitrite by chemiluminescence and electron paramagnetic resonance to measure the final product Hb(II)NO. By modifying the chemiluminescence method used to detect NO, we have been able to identify two intermediates: 1) a heme-associated nitrite complex that is released as NO in acid solution in the presence of ascorbate and 2) an intermediate that releases NO at neutral pH in the presence of ferricyanide when reacted with an Fe(III) ligand like azide. This species designated as “Hb(II)NO+ ⇆ Hb(III)NO” has properties of both isomeric forms resulting in a slower NO dissociation rate and much higher stability than Hb(III)NO, but provides a potential source for bioactive NO, which can be released from the RBC. This detailed analysis of the nitrite reaction with deoxyHb provides important insights into the mechanism for nitrite induced vasodilation by RBCs.Nitric oxide (NO), also known as the endothelium-derived relaxing factor, is an important messenger molecule involved in the regulation of vascular tone and blood flow (1). The primary source for the synthesis of NO in the circulatory system involves endothelial nitric-oxide synthase (2). This enzyme requires oxygen for the synthesis of NO and is, therefore, less effective in the microcirculation where hypoxic vasodilation regulates the delivery of oxygen. Because nitric oxide has a life-time in blood of <2 ms (3), a mechanism is required to allow for more distal and sustained effects of NO at the reduced oxygen pressures found in the microcirculation. Recent studies have suggested that the bioactivity of NO can be conserved in the blood by the uptake of NO and/or nitrite by red blood cells (RBCs)2 and its interaction with hemoglobin (47). However, any role for the red cell in transporting nitric oxide must be able to avoid the very efficient scavenging of nitric oxide by both oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) that destroy and trap NO, respectively, preventing a physiological role for RBC NO.In a series of studies, Stamler and co-workers (710) have hypothesized that NO can bypass this difficulty by being transferred to the β-93 thiol group of hemoglobin (Hb) forming S-nitrosylated hemoglobin (SNO-Hb) when partially heme nitrosylated hemoglobin (Hb(II)NO) is oxygenated. The allosteric quaternary conformational change of hemoglobin at low oxygen pressure destabilizes the β-93 nitrosylated thiol and results in the transfer of NO to membrane thiol groups facilitating the release of the NO to the plasma and the vasculature. However, the extremely low levels of SNO-Hb (11) found in human blood and its instability (12) as a result of intracellular reducing conditions within the RBCs do not support the SNO-Hb hypothesis as the major mechanism for NO transport (1113).The 2003 studies by Rifkind and Gladwin and their collaborators (4, 5, 14, 15) proposed an alternative mechanism that involved the reduction of nitrite, formed by the oxidation of NO, back to NO by a reaction with deoxyHb. Nitrite is present in the blood at fairly high levels (0.1–0.5 μmol/liter) (4, 1618), and it is much more stable than NO or S-nitrosothiols (6), making nitrite an ideal storage pool that can be converted to NO. However, the mechanism by which the NO produced in the red cell by nitrite reduction is exported without being trapped or destroyed is still unclear. Recent studies by Rifkind and co-workers (5, 13, 19) have suggested that the trapping of NO by deoxyHb and/or oxyHb can be bypassed by the formation of a metastable intermediate(s) that retains the NO in a state that is not quenched by reacting with oxyHb or deoxyHb.In this report, we quantitate the two intermediate species that are formed during the reduction of nitrite by deoxyHb when an excess of hemoglobin is present. We also demonstrate that one of the intermediate species designated as “Hb(II)NO+ ⇆ Hb(III)NO” has properties of Hb(II)NO+ and Hb(III)NO, respectively. This species has a slower NO dissociation rate and a much higher stability than Hb(III)NO. This intermediate is a potential source for bioactive NO that can be released from RBCs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号