首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Mei5-Sae3 Protein Complex Mediates Dmc1 Activity in Saccharomyces cerevisiae
Authors:Susan R Ferrari  Jennifer Grubb  and Douglas K Bishop
Institution:Committee on Cancer Biology, Committee on Genetics, ||
Abstract:During homologous recombination, a number of proteins cooperate to catalyze the loading of recombinases onto single-stranded DNA. Single-stranded DNA-binding proteins stimulate recombination by coating single-stranded DNA and keeping it free of secondary structure; however, in order for recombinases to load on single-stranded-DNA-binding protein-coated DNA, the activity of a class of proteins known as recombination mediators is required. Mediator proteins coordinate the handoff of single-stranded DNA from single-stranded DNA-binding protein to recombinase. Here we show that a complex of Mei5 and Sae3 from Saccharomyces cerevisiae preferentially binds single-stranded DNA and relieves the inhibition of the strand assimilation and DNA binding abilities of the meiotic recombinase Dmc1 imposed by the single-stranded DNA-binding protein replication protein A. Additionally, we demonstrate the physical interaction of Mei5-Sae3 with replication protein A. Our results, together with previous in vivo studies, indicate that Mei5-Sae3 is a mediator of Dmc1 assembly during meiotic recombination in S. cerevisiae.During meiosis, recombination between homologous chromosomes ensures proper segregation into haploid products. Recombination events are initiated by the formation of double strand breaks (DSBs)2 in DNA (1). This is followed by resection of free DNA ends to yield 3′ single-stranded tails, upon which recombinase assembles to form nucleoprotein filaments. Following recombinase assembly, the nucleoprotein filament engages a donor chromatid, searches for homologous DNA sequences on that chromatid, and promotes strand exchange to yield a heteroduplex DNA intermediate often referred to as a joint molecule. Although recombinase alone is capable of promoting homology search and strand exchange in vitro, genetic and biochemical studies have demonstrated that normal recombinase function in vivo requires the activity of a number of accessory factors (2). These factors enhance the assembly of nucleoprotein filaments, target capture, homology search, and dissociation of recombinase from duplex DNA.Most eukaryotes possess two recombinases, both homologues of the Escherichia coli recombinase RecA: Rad51, which is the major recombinase in mitotic cells and is also important during meiotic recombination, and Dmc1, which functions only in meiosis. Dmc1 and Rad51 have been shown to assemble at DSBs by immunofluorescence and chromatin immunoprecipitation (36), and both proteins oligomerize on single-stranded DNA (ssDNA) to form nucleofilaments that catalyze strand invasion (79).A number of biochemical studies have defined the role of accessory factors in stimulating the activity of Rad51 (1012). Replication protein A (RPA), the yeast ssDNA-binding protein (SSB), removes secondary structure in ssDNA that otherwise prevents formation of fully functional nucleoprotein filaments (13). Both Rad52 protein (11, 12) and the heterodimeric protein Rad55/Rad57 (14) can overcome the inhibitory effect of RPA on Rad51 nucleoprotein filament formation in purified systems, mediating a handoff between RPA and Rad51. It is thought that the mechanism for the mediator activity of Rad52 involves Rad52 recognizing and binding to RPA-coated ssDNA, where it provides nucleation sites for the recruitment of free molecules of Rad51 (15). The tumor suppressor protein BRCA2 also serves as an assembly factor for Rad51 during mitosis in a variety of species that encode orthologues of this protein, including mice (16), corn smut (17), and humans (18).The meiosis-specific recombinase Dmc1 is stimulated by a distinct set of accessory factors. Immunostaining studies suggest that the Rad51 mediators Rad52 and Rad55/Rad57 are not required for assembly of Dmc1 foci in vivo, although Rad51 itself promotes Dmc1 foci (1921). More recently, immunostaining and chromatin immunoprecipitation experiments demonstrated a role for the Mei5 and Sae3 proteins of Saccharomyces cerevisiae in assembly of Dmc1 at sites of DSBs in vivo (22, 23). Consistent with these observations, mei5 and sae3 mutants display markedly similar meiotic defects as compared with dmc1 mutants, including defects in sporulation, spore viability, crossing over, DSB repair, progression through meiosis, and synaptonemal complex formation (19, 2224). Finally, the three proteins have been shown to physically interact; Mei5 and Sae3 have been co-purified and co-immunoprecipitated, and an N-terminal portion of Mei5 has been shown to interact with Dmc1 in a two-hybrid assay (22).The fission yeast Schizosaccharomyces pombe encodes two proteins, Swi5 and Sfr1, which share sequence homology with Sae3 and Mei5, respectively (22). Swi5 and Sfr1 have been shown to stimulate the strand exchange activity of Rhp51 (the S. pombe Rad51 homologue) and Dmc1 (25). Although some results indicate functional similarity of Swi5-Sfr1 and Mei5-Sae3, there are also clear differences. The Mei5-Sae3 complex of budding yeast is expressed solely during meiosis, and no mitotic phenotypes have been reported for mei5 or sae3 mutants (22, 24, 26). In contrast, the Swi5-Sfr1 complex of fission yeast is expressed in mitotic and meiotic cells, and mutations in SWI5 have been shown to cause defects in mitotic recombination (27). Furthermore, although mei5 and sae3 mutants are phenotypically similar to dmc1 mutants, swi5 and sfr1 mutants display more severe meiotic defects during fission yeast meiosis than do dmc1 mutants (2729). These data suggest that although Swi5-Sfr1 clearly contributes to Rad51 activity in fission yeast, it is possible that the activity of Mei5-Sae3 is restricted to stimulating Dmc1 in budding yeast.In this study, a biochemical approach is used to test the budding yeast Mei5-Sae3 complex for properties expected of a recombinase assembly mediator. We show that Mei5-Sae3 binds both ssDNA and double-stranded DNA (dsDNA) but binds ssDNA preferentially. We also show that Mei5-Sae3 can overcome the inhibitory effects of RPA on the ssDNA binding and strand assimilation activities of Dmc1. Finally, we show that Mei5-Sae3 and RPA bind one another directly. These results indicate that Mei5-Sae3 acts directly as a mediator protein for assembly of Dmc1.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号