首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Factors controlling resource allocation in mountain birch
Authors:Pekka Kaitaniemi  Kai Ruohomki
Institution:

aSection of Ecology, Department of Biology, and Kevo Subarctic Research Institute, University of Turku, Turku, Finland

Abstract:We present a comprehensive analysis of factors affecting resource allocation and crown formation in a subarctic birch tree, Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti. Using biomass measurements and digitized data on tree architecture, we investigated several hypotheses on various factors that may modify plant growth. We also analyzed the extent to which different mechanisms operate at different scales, ranging from individual shoots to the whole branches or trees. Different factors affected allocation at different levels of organization. Stem age had a minor effect, suggesting that similar control mechanisms operate at all stages of development. Fates of individual shoots were affected by their local growing conditions as indicated, for example, by the dependence of long shoot production on light. Buds formed in the current long shoots were likely to become new long shoots. In the innermost crown parts, radial growth had priority compared to long shoot production. Elongation of individual long shoots was controlled by two conflicting factors. Long distance from the roots suppressed growth, probably indicating costs associated with resource transportation, whereas a high level of light augmented growth. In contrast, growth of entire branches was not so clearly related to the availability of resources, but showed limitation due to allometric scaling. This set a relationship between the maximum long shoot number and the overall branch size, and may indicate allometric constraints to the way a tree is constructed. Strict allometric relationships existed also between other structural traits of mountain birch, most of them similar at all levels of branching hierarchy. However, despite the upper level restrictions set by allometry, source-sink interactions and localized responses of individual shoots operated as local processes that directed allocation towards the most favourable positions. This may be a mechanism for achieving efficient tree architecture in terms of resource intake and costs of transportation.
Keywords:allometry  apical control  plant architecture  resource allocation  source-sink interactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号