首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Time-course of oxidation of lipids in human cerebrospinal fluid in vitro
Authors:Arlt S  Finckh B  Beisiegel U  Kontush A
Institution:Medical Clinic, University Hospital Eppendorf, Hamburg, Germany.
Abstract:Oxidative mechanisms play an important role in the pathogenesis of Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. To assess whether the oxidation of brain lipoproteins plays a role in the development of these pathologies, we investigated whether the lipoproteins of human cerebrospinal fluid (CSF) are susceptible to oxidative modification in vitro. We studied oxidation time-course for up to 100 h of human CSF in the absence (autooxidation) or presence of exogenous oxidants. Autooxidation of diluted CSF was found to result in a slow accumulation of lipid peroxidation products. The time-course of lipid hydroperoxide accumulation revealed three consecutive phases, lag-phase, propagation phase and plateau phase. Qualitatively similar time-course has been typically found in human plasma and plasma lipoproteins. Autooxidation of CSF was accelerated by adding exogenous oxidants, delayed by adding antioxidants and completely inhibited by adding a chelator of transition metal ions. Autooxidation of CSF also resulted in the consumption of endogenous ascorbate, alpha-tocopherol, urate and linoleic and arachidonic acids. Taking into account that (i) lipid peroxidation products measured in our study are known to be derived from fatty acids, and (ii) lipophilic antioxidants and fatty acids present in CSF are likely to be located in CSF lipoproteins, we conclude that lipoproteins of human CSF are modified in vitro during its autooxidation. This autooxidation appears to be catalyzed by transition metal ions, such as Cu(II) and Fe(III), which are present in native CSF. These data suggest that the oxidation of CSF lipoproteins might occur in vivo and play a role in the pathogenesis of neurodegenerative diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号