首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Implication of CO inactivation on myoglobin function
Authors:Chung Youngran  Huang Shih-Jwo  Glabe Alan  Jue Thomas
Institution:Department of Biochemistry and Molecular Medicine, Univ. of California Davis, Davis, CA 95616-8635, USA.
Abstract:Myoglobin (Mb) has a purported role in facilitating O2 diffusion in tissue, especially as cellular PO2 drops or the respiration demand increases. Inhibiting Mb with CO under conditions that accentuate the facilitated diffusion role should then elicit a significant physiological response. In one set of experiments, the perfused myocardium received buffer with decreasing PO2 (225, 129, and 64 mmHg). Intracellular PO2 declined, as reflected in the 1H NMR Val E11 signal of MbO2 (67%, 32%, and 18%). The addition of 6% CO further reduced the available MbO2 (11%, 9%, and 7%), as evidenced by the decline of the MbO2 Val E11 signal intensity at –2.76 ppm. In a second set of experiments, electrical stimulation increased the heart rate (300, 450, and 540 beats/min) and correspondingly the O2 consumption rate (MVO2). Intracellular PO2 also declined, as reflected in the slight drop in the MbO2 signal (100%, 96%, and 82%). MVO2 increased (100%, 114%, 165%). The addition of 3% CO in the stimulated hearts further decreased the available MbO2 (46%, 44%, and 29%). In all cases, CO inactivation of Mb does not induce any change in the respiration rate, contractile function, and high-energy phosphate levels. Moreover, the MbCO/MbO2 partition coefficient shifts dramatically from its in vitro value during hypoxia and increased work. The observation suggests a modulation of an intracellular O2 gradient. Overall, the experimental observations provide no evidence of a facilitated diffusion role for Mb in perfused myocardium and implicate a physiologically responsive intracellular O2 gradient. nuclear magnetic resonance; respiration; carbon monoxide; myocardium; oxidative phosphorylation
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号