首页 | 本学科首页   官方微博 | 高级检索  
   检索      


How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment
Authors:Siepmann Juergen  Elkharraz Khaled  Siepmann Florence  Klose Diana
Institution:College of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany. jsiepmann@pharma.univ-lille2.fr
Abstract:The major aim of this study was to better understand the importance of autocatalysis in poly(lactic-co-glycolic acid) (PLGA)-based microparticles used as controlled drug delivery systems. Upon contact with biological fluids, PLGA is degraded into shorter chain alcohols and acids. An accumulation of the latter can lead to significant drops in micro-pH and subsequent accelerated polymer degradation. The system size, determining the diffusion path lengths, plays a crucial role for the occurrence/absence of autocatalytic effects. Using an oil-in-water solvent-extraction/evaporation process, different-sized drug-free and drug-loaded, PLGA-based microparticles were prepared and physicochemically characterized (SEM, DSC, SEC, optical microscopy, and UV-spectrophotometry) before and upon exposure to simulated biological fluids. Based on these experimental results, an adequate mathematical theory was developed describing the dominating mass transfer processes and chemical reactions. Importantly, a quantitative relationship could be established between the dimension of the device and the resulting drug release patterns, taking the effects of autocatalysis into account.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号