首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light activation and molecular-mass changes of NAD(P)-glyceraldehyde 3-phosphate dehydrogenase of spinach and maize leaves
Authors:Sandra Scagliarini  Paolo Trost  Paolo Pupillo  Vincenzo Valenti
Institution:(1) Dipartimento di Biologia, Università di Bologna, Via Irnerio 42, I-40126 Bologna, Italy;(2) Dipartimento di Biologia Vegetale, Università di Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
Abstract:Light modulation of chloroplast glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) has been investigated. Complete activation of NADPH-dependent activity is achieved at 25 W.m–2 photosynthetically active radiation in spinach (Spinacia oleracea L.) and 100 W.m–2 in maize (Zea mays L.) leaves. Light activation is stronger in spinach (fivefold on average) than in maize (twofold), which shows higher ldquodarkrdquo activity. The NADH dependent activity does not change appreciably. Several substrate activators can simulate in vitro the light effect with recovery of latent NADPH-dependent activity of spinach enzyme, but they are almost inactive with maize enzyme. A mixture of activators has been devised to fully activate the spinach enzyme under most conditions. The NAD(P)-GAPDH protein can be resolved by rapid gel filtration (fast protein liquid chromatography) into three conformers which have different molecular masses according to the light conditions. Enzyme from darkened leaves or chloroplasts, or dichlorophenyl-1,1-dimethylurea-treated chloroplasts is mainly a 600-kDa regulatory form with low NADPH-dependent activity relative to NADH-activity. Enzyme from spinach leaves or chloroplasts during photosynthesis is mainly a 300-kDa oligomer, which along with the 600-kDa form also occurs in leaves of darkened maize. The conformer of illuminated maize leaves is mainly a 160-kDa species. Results are consistent with a model of NAD(P)-GAPDH freely interconvertible between protomers of the 160-kDa (or 300-kDa intermediate) form with high NADPH-activity, produced in the light by the action of thioredoxin and activating metabolites (spinach only), and a regulatory 600-kDa conformer with lower NADPH-activity produced in darkness or when photosynthesis is inhibited. This behavior is reminiscent of the in-vitro properties of purified enzyme; therefore, it seems unlikely that NAD(P)-GAPDH in the chloroplast is part of a stable multienzyme complex or is bound to membranes.Abbreviations AEM activator equilibrium mixture - Chl chlorophyll - DCMU dichlorophenyl 1,1-dimethylurea - DTT dithiothreitol - FPLC fast protein liquid chromatography - NAD(P)-GAPDH glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent - PAR photosynthetic active radiation - PGK phosphoglycerate kinase - Tricine N-tris(hydroxy-methyl) methyl-glycine This work was supported by grants from the Ministero dell'Università e della Ricerca Seientifica e Tecnologica (40%, years 1990 and 1991).
Keywords:Calvin cycle  Glyceraldehyde 3-phosphate dehydrogenase  NAD(P)-dependent  Photosynthesis  Spinacia  Zea
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号