首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Immobilization of lactase for the continuous hydrolysis of whey permaete
Authors:A Illanes  A Ruiz  M E Zúñiga  C Aguirre  S O'Reilly  E Curotto
Institution:(1) School of Biochemical Engineering, Valparíso, Chile;(2) Institute of Chemistry, Universidad Católica de Valparaíso, Valparíso, Chile
Abstract:The production of lactose-based sweeteners is considered very promising. Fungal lactase has been immobilized on crosslinked chitin to develop a process for the continuous hydrolysis of demineralized whey permaete. The optimization of lactase immobilization on chitin and chitosan was performed, activities of 4 · 105 and 2.2 · 105 u/kg at yields of 33 and 23% were obtained for both supports, respectively. The chitin based catalyst was selected for further studies and a procedure was developed for in-situ enzyme immobilization. The kinetic behaviour of the catalyst was determined to propose a kinetic model for the initial rate of lactose hydrolysis. Pseudo steady-state and long term operation of packed bed reactors with chitin-immobilized lactase ranging from small laboratory to pre-pilot unit was carried out. The results are discussed and compared with commercial immobilized lactases. Preliminary economic evaluation for the production of ultrafiltered whey protein and hydrolyzed lactose syrup, within a dairy industry in Chile, was satisfactory in terms of profitability, both for the chitin immobilized lactase developed and for a commercial immobilized lactase.List of Symbols a moles/m3 glucose concentration in Eq. (1) - C i US$ total annual cost (without considering plant depreciation) - D US$ annual depreciation - F m3/h flowrate - h m3/h volumetric mass transfer coefficient - i moles/m3 galactose concentration in Eqs. (1) and (2) - K A moles/m3 dissociation constant for glucose in Eq. (1) - K A prime moles/m3 dissociation constant for glucose in Eq. (1) - K I moles/m3 inhibition constant for galactose in Eqs. (1) and (2) - K m moles/m3 Michaelis constant for substrate in Eqs. (1) and (2) - k D h–1 first-order thermal deactivation constant - P kg dry weight of catalyst - PV US$ net present value - R % discounted cash-flow rate of return - s moles/m3 substrate concentration - s0 moles/m3 feed substrate concentration - S n US$ annual sales income - TC US$ total capital income - t 1/2 h catalyst half-life - v moles/h · kg initial rate of reaction - V MAX moles/h · kg maximum reaction rate in Eqs. (1) and (2) - V MAX prime moles/h · kg maximum reaction rate in Eq. (1) - ¯V max prime moles/h initial rate of reaction - V R prime m3 reaction volume free of catalyst particles - X substrate degree of conversion = s0–s/s0 - agr Damkoehler number = ¯V MAX prime /h k m - pgr moles/(m3 · h) reactor productivity in Eq. (3)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号