首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acute in vitro hypoxia and high-altitude (4,559 m) exposure decreases leukocyte oxygen consumption
Authors:Faoro Vitalie  Fink Bruno  Taudorf Sarah  Dehnert Christoph  Berger Marc M  Swenson Erik R  Bailey Damian M  Bärtsch Peter  Mairbäurl Heimo
Institution:Medical Clinic VII, Univ. Hospital Heidelberg, Germany.
Abstract:Hypoxia impairs metabolic functions by decreasing activity and expression of ATP-consuming processes. To separate hypoxia from systemic effects, we tested whether hypoxia at high altitude affects basal and PMA-stimulated leukocyte metabolism and how this compares to acute (15 min) and 24 h of in vitro hypoxia. Leukocytes were prepared at low altitude and ~24 h after arrival at 4559 m. Mitochondrial oxygen consumption (JO?) was measured by respirometry, oxygen radicals by electron spin resonance spectroscopy, both at a Po? = 100 mmHg (JO?,???) and 20 mmHg (JO?,??). Acute hypoxia of leukocytes decreased JO? at low altitude. Exposure to high altitude decreased JO?,???, whereas JO?,?? was not affected. Acute hypoxia of low-altitude samples decreased the activity of complexes I, II, and III. At high altitude, activity of complexes I and III were decreased when measured in normoxia. Stimulation of leukocytes with PMA increased JO?,??? at low (twofold) and high altitude (five-fold). At both locations, PMA-stimulated JO? was decreased by acute hypoxia. Basal and PMA-stimulated reactive oxygen species (ROS) production were unchanged at high altitude. Separate in vitro experiments performed at low altitude show that ~75% of PMA-induced increase in JO? was due to increased extra-mitochondrial JO? (JO?(,res); in the presence of rotenone and antimycin A). JO?(,res) was doubled by PMA. Acute hypoxia decreased basal JO?(,res) by ~70% and PMA-stimulated JO?(,res) by about 50% in cells cultured in normoxia and hypoxia (1.5% O?; 24 h). Conversely, 24 h in vitro hypoxia decreased mitochondrial JO?,??? and JO?,??, extra-mitochondrial, basal, and PMA-stimulated JO? were not affected. These results show that 24 h of high altitude but not 24 h in vitro hypoxia decreased basal leukocyte metabolism, whereas PMA-induced JO? and ROS formation were not affected, indicating that prolonged high-altitude hypoxia impairs mitochondrial metabolism but does not impair respiratory burst. In contrast, acute hypoxia impairs respiratory burst at either altitude.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号