首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ca(2+)/calmodulin directly interacts with the pleckstrin homology domain of AKT1
Authors:Dong Biao  Valencia C Alexander  Liu Rihe
Institution:School of Pharmacy and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Abstract:AKT kinase, also known as protein kinase B, is a key regulator of cell growth, proliferation, and metabolism. The activation of the AKT signaling pathway is one of the most frequent molecular alterations in a wide variety of human cancers. Dickson and coworkers recently observed that Ca(2+).calmodulin (Ca(2+).CaM) may be a common regulator of AKT1 activation (Deb, T. B., Coticchia, C. M., and Dickson, R. B. (2004) J. Biol. Chem. 279, 38903-38911). In our efforts to scan the mRNA-displayed proteome libraries for Ca(2+).CaM-binding proteins, we found that both human and Caenorhabditis elegans AKT1 kinases bound to CaM in a Ca(2+)-dependent manner (Shen, X., Valencia, C. A., Szostak, J., Dong, B., and Liu, R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 5969-5974 and Shen, X., Valencia, C. A., Gao, W., Cotten, S. W., Dong, B., Chen, M., and Liu, R. (2007) submitted for publication). Here we demonstrate that Ca(2+).CaM and human AKT1 were efficiently co-immunoprecipitated, and their interaction was direct rather than mediated by other proteins. The binding is in part attributed to the first 42 residues of the pleckstrin homology (PH) domain, a region that is critical for the recognition of its lipid ligands. The PH domain of human AKT1 can disrupt the complex of the full-length AKT1 with Ca(2+).CaM. In addition, Ca(2+).CaM competes with phosphatidylinositol 3,4,5-trisphophate for interaction with the PH domain of human AKT1. Our findings suggest that Ca(2+).CaM is directly involved in regulating the functions of AKT1, presumably by releasing the activated AKT1 from the plasma membrane and/or prohibiting it from re-association with phosphoinositides on plasma membrane.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号