首页 | 本学科首页   官方微博 | 高级检索  
     


An ion selectivity filter in the extracellular domain of Cys-loop receptors reveals determinants for ion conductance
Authors:Hansen Scott B  Wang Hai-Long  Taylor Palmer  Sine Steven M
Affiliation:Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0650 and the §Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, and the Department of Neurology, Mayo Clinic, College of Medicine, Rochester, Minnesota 55905
Abstract:Neurotransmitter binding to Cys-loop receptors promotes a prodigious transmembrane flux of several million ions/s, but to date, structural determinants of ion flux have been identified flanking the membrane-spanning region. Using x-ray crystallography, sequence analysis, and single-channel recording, we identified a novel determinant of ion conductance near the point of entry of permeant ions. Co-crystallization of acetylcholine-binding protein with sulfate anions revealed coordination of SO4(2-) with a ring of lysines at a position equivalent to 24 A above the lipid membrane in homologous Cys-loop receptors. Analysis of multiple sequence alignments revealed that residues equivalent to the ring of lysines are negatively charged in cation-selective receptors but are positively charged in anion-selective receptors. Charge reversal of side chains at homologous positions in the nicotinic receptor from the motor end plate decreases unitary conductance up to 80%. Selectivity filters stemming from transmembrane alpha-helices have similar pore diameters and compositions of amino acids. These findings establish that when the channel opens under a physiological electrochemical gradient, permeant ions are initially stabilized within the extracellular vestibule of Cys-loop receptors, and this stabilization is a major determinant of ion conductance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号