首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis
Authors:Drevland Randy M  Jia Yunhua  Palmer David R J  Graham David E
Institution:Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712 and the §Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
Abstract:Homoaconitase enzymes catalyze hydrolyase reactions in the alpha-aminoadipate pathway for lysine biosynthesis or the 2-oxosuberate pathway for methanogenic coenzyme B biosynthesis. Despite the homology of this iron-sulfur protein to aconitase, previously studied homoaconitases catalyze only the hydration of cis-homoaconitate to form homoisocitrate rather than the complete isomerization of homocitrate to homoisocitrate. The MJ1003 and MJ1271 proteins from the methanogen Methanocaldococcus jannaschii formed the first homoaconitase shown to catalyze both the dehydration of (R)-homocitrate to form cis-homoaconitate, and its hydration is shown to produce homoisocitrate. This heterotetrameric enzyme also used the analogous longer chain substrates cis-(homo)(2)aconitate, cis-(homo)(3)aconitate, and cis-(homo)(4)aconitate, all with similar specificities. A combination of the homoaconitase with the M. jannaschii homoisocitrate dehydrogenase catalyzed all of the isomerization and oxidative decarboxylation reactions required to form 2-oxoadipate, 2-oxopimelate, and 2-oxosuberate, completing three iterations of the 2-oxoacid elongation pathway. Methanogenic archaeal homoaconitases and fungal homoaconitases evolved in parallel in the aconitase superfamily. The archaeal homoaconitases share a common ancestor with isopropylmalate isomerases, and both enzymes catalyzed the hydration of the minimal substrate maleate to form d-malate. The variation in substrate specificity among these enzymes correlated with the amino acid sequences of a flexible loop in the small subunits.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号