首页 | 本学科首页   官方微博 | 高级检索  
     


ADP competes with FAD binding in putrescine oxidase
Authors:van Hellemond Erik W  Mazon Hortense  Heck Albert J  van den Heuvel Robert H H  Heuts Dominic P H M  Janssen Dick B  Fraaije Marco W
Affiliation:Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands and the §Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
Abstract:Putrescine oxidase from Rhodococcus erythropolis NCIMB 11540 (PuO(Rh)) is a soluble homodimeric flavoprotein of 100 kDa, which catalyzes the oxidative deamination of putrescine and some other aliphatic amines. The initial characterization of PuO(Rh) uncovered an intriguing feature: the enzyme appeared to contain only one noncovalently bound FAD cofactor per dimer. Here we show that this low FAD/protein ratio is the result of tight binding of ADP, thereby competing with FAD binding. MS analysis revealed that the enzyme is isolated as a mixture of dimers containing two molecules of FAD, two molecules ADP, or one FAD and one ADP molecule. In addition, based on a structural model of PuO(Rh) that was built using the crystal structure of human monoamine oxidase B (MAO-B), we constructed an active mutant enzyme, PuO(Rh) A394C, that contains covalently bound FAD. These findings show that the covalent FAD-protein linkage can be formed autocatalytically and hint to a new-found rationale for covalent flavinylation: covalent flavinylation may have evolved to prevent binding of ADP or related cellular compounds, which would prohibit formation of flavinylated and functional enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号