首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Imaging and speciation of trace elements in biological environment
Authors:Lobinski R  Moulin C  Ortega R
Institution:Equipe de chimie analytique bio-inorganique, CNRS UMR5034, Hélioparc, 2, avenue Professeur-Angot, 64053 Pau, France.
Abstract:Mineral elements, often at the trace level, play a considerable role in physiology and pathology of biological systems. Metallogenomics, metalloproteomics, and metallomics are among the emerging disciplines which are critically dependent on spatially resolved concentration maps of trace elements in a cell or tissue, on information on chemical speciation, and on that on metal-binding coordination sites. The mini-review discusses recent progress in analytical techniques for element profiling on the genome scale, biological trace element imaging, and probing, identification and quantification of chemical species in the biological environment. Imaging of the element distribution in cells and tissue sections is becoming possible with sub-micrometer spatial resolution and picogram-level sensitivity owing to advances in laser ablation MS, ion beam and synchrotron radiation X-ray fluorescence microprobes. Progress in nanoflow chromatography and capillary electrophoresis coupled with element specific ICP MS and molecule-specific electrospray MS/MS and MALDI enables speciation of elements in microsamples in a complex biological environment. Laser ablation ICP MS, micro-SXRF, and micro-PIXE allow mapping of trace element distribution in 1D and 2D proteomics gels. The increasing sensitivity of EXAFS and XANES owing to the use of more intense synchrotron beams and efficient focusing optics provide information about oxidation state, fingerprint speciation of metal sites and metal-site structures.
Keywords:Speciation  Metalloproteomics  Metallogenomics  Metallomics  Bioinorganic  Chemical imaging
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号