首页 | 本学科首页   官方微博 | 高级检索  
     


Use of viscogens, dNTPalphaS, and rhodium(III) as probes in stopped-flow experiments to obtain new evidence for the mechanism of catalysis by DNA polymerase beta
Authors:Bakhtina Marina  Lee Soojin  Wang Yu  Dunlap Chris  Lamarche Brandon  Tsai Ming-Daw
Affiliation:Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
Abstract:The kinetic mechanism and the structural bases of the fidelity of DNA polymerases are still highly controversial. Here we report the use of three probes in the stopped-flow studies of Pol beta to obtain new, direct evidence for our previous interpretations: (a) Increasing the viscosity of the reaction buffer by sucrose or glycerol is expected to slow down the conformational change differentially, and it was shown to slow down the first (fast) fluorescence transition selectively. (b) Use of dNTPalphaS in place of dNTP is expected to slow down the chemical step preferentially, and it was shown to slow down the second (slow) fluorescence transition selectively. (c) The substitution-inert Rh(III)dNTP was used to show for the first time that the slow fluorescence change occurs after mixing of Pol beta.DNA.Rh(III)dNTP with Mg(II). These results, along with crystal structures, suggest that the subdomain-closing conformational change occurs before binding of the catalytic Mg(II) while the rate-limiting step occurs after binding of the catalytic Mg(II). These results provide new evidence to the mechanism we suggested previously, but do not support the results of three recent papers of computational studies. The results were further supported by a "sequential mixing" stopped-flow experiment that used no analogues, and thus ruled out the possibility that the discrepancy between experimental and computational results is due to the use of analogues. The methodologies can be used to examine other DNA polymerases to answer whether the properties of Pol beta are exceptional or general.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号