首页 | 本学科首页   官方微博 | 高级检索  
     


Transition state complexes of the Klebsiella pneumoniae nitrogenase proteins. Spectroscopic properties of aluminium fluoride-stabilized and beryllium fluoride-stabilized MgADP complexes reveal conformational differences of the Fe protein.
Authors:R W Miller  R R Eady  S A Fairhurst  C A Gormal  B E Smith
Affiliation:Ecovale Research, Harrisville, New Hampshire, USA.
Abstract:Stable inactive 2 : 1 complexes of the Klebsiella pneumoniae nitrogenase components (Kp2/Kp1) were prepared with ADP or the fluorescent ADP analogue, 2'(3')-O-[N-methylanthraniloyl] ADP and AlF(4)(-) or BeF(3)(-) ions. By analogy with published crystallographic data [Schindelin et al. (1997) Nature 387, 370-376)], we suggest that the metal fluoride ions replaced phosphate at the two ATP-binding sites of the iron protein, Kp2. The beryllium (BeF(x)) and aluminium (AlF(4)(-)) containing complexes are proposed to correspond to the ATP-bound state and the hydrolytic transition states, respectively, by analogy with the equivalent complexes of myosin [Fisher et al. (1995) Biochemistry 34, 8960-8972]. (31)P NMR spectroscopy showed that during the initial stages of complex formation, MgADP bound to the complexed Kp2 in a manner similar to that reported for isolated Kp2. This process was followed by a second step that caused broadening of the (31)P NMR signals and, in the case of the AlF4- complex, slow hydrolysis of some of the excess ADP to AMP and inorganic phosphate. The purified BeFx complex contained 3.8 +/- 0.1 MgADP per mol Kp1. With the AlF(4)(-) complex, MgAMP and adenosine (from MgAMP hydrolysis) replaced part of the bound MgADP although four AlF(4)(-) ions were retained, demonstrating that full occupancy by MgADP is not required for the stability of the complex. The fluorescence emission maximum of 2'(3')-O-[N-methylanthraniloyl] ADP was blue-shifted by 6-8 nm in both metal fluoride complexes and polarization was 6-9 times that of the free analogue. The fluorescence yield of bound 2'(3')-O-[N-methylanthraniloyl] ADP was enhanced by 40% in the AlF(4)(-) complex relative to the solvent but no increase in fluorescence was observed in the BeFx complex. Resonance energy transfer from conserved tyrosine residues located in proximity to the Kp2 nucleotide-binding pocket was marked in the AlF(4)(-) complex but minimal in the BeFx fluoride complex, illustrating a clear conformational difference in the Fe protein of the two complexes. Our data indicate that complex formation during the nitrogenase catalytic cycle is a multistep process involving at least four conformational states of Kp2: similar to the free Fe protein; as initially complexed with detectable (31)P NMR; as detected in mature complexes with no detectable (31)P NMR; in the AlF(4)(-) complex in which an altered tyrosine interaction permits resonance energy transfer with 2'(3')-O-[N-methylanthraniloyl] ADP.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号