首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Proton stoichiometry of the cytochrome c peroxidase mechanism as a function of pH.
Authors:C W Conroy  J E Erman
Abstract:The proton stoichiometry for the oxidation of cytochrome c peroxidase (ferrocytochrome c: hydrogen-peroxide oxidoreductase, EC 1.11.1.5) to cytochrome c peroxidase Compound I by H2O2, for the reduction of cytochrome c peroxidase Compound I to cytochrome c peroxidase Compound II by ferrocyanide, and for the reduction of cytochrome c peroxidase Compound II to the native enzyme by ferrocyanide has been determined as a function of pH between pH 4 and 8. The basic stoichiometry for the reaction is that no protons are required for the oxidation of the native enzyme to Compound I, while one proton is required for the reduction of Compound I to Compound II, and one proton is required for the reduction of Compound II to the native enzyme. Superimposed upon the basic stoichiometry is a contribution due to the perturbation of two ionizable groups in the enzyme by the redox reactions. The pKa values for the two groups are 4.9 +/- 0.3 and 5.7 +/- 0.2 in the native enzyme, 4.1 +/- 0.4 and 7.8 +/- 0.2 in Compound I, and 4.3 +/- 0.4 and 6.7 +/- 0.2 in Compound II.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号